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Professor. Niladri Chatterjee
Department of Mathematics

Indian Institute of Technology — Delhi
Lecture — 03
Nonparametric Statistical Inference

Welcome students to the MOOC series of lectures on Nonparametric Statistical Inference. This

is lecture number 3.
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We had already discussed Nonparametric test for Centrality
with the following two tests:

+ One sample Sign Test

+ One sample Wilcoxon Sign Rank test.

In this class we shall see extension of the above as follows:

1. Paired Sample Test /

2. lesls for comparing the central location for two different
populations. s

In the last class, we had already discussed two nonparametric tests for centrality in particular
we have studied one sample sign test and one sample Wilcoxon Signed Rank test. In this class
we shall see extension of the above two as follows. We shall first study paired sample test and
also we will look at test for comparing the central location for two different populations that

means two sample test.
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Recapitulation

Sign Test

Ho: M=Ms /

Reject Ho, in favour of Hi

a) He M<M;: ifN* < T, =

b) H: M>M, = if N< T, (S
¢) He MM, = if either N*orN < T,
Or - &

NtorN > T,,

5 -
0 b
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For Sign test you are testing if M = M, and there maybe three alternatives M < M, when the
rejection criteria is that N* < T_a. If M > M, that means that N~ < T,, and if M # M, then

either of N™ or N~ is less than the corresponding critical values T, . Why? Because these are

two-sided test.

We have given you the explanation before, so if it is a one-sided test of size a then we have to
look at if the value is coming out to be beyond the T, so that we can reject. This is for upper
side. If it is lower sided one-tailed then we will look at this and the value should fall here in
order to reject the null hypothesis, but when it is two-sided test for equality of two populations

this is T« and this is also T«. And we will reject null hypothesis if the obtain statistics falls here
2 2

or falls here.
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Recapitulation

Wilcoxon Signed Rank Test

Ho: M=M,
Reject Ho, in favour of Hi
a) H: M>M, = if T-
b) Hy M<M, = if T*

o i
< T

¢) Hp M_zl\;lo i ifeither T*orT- < Ty, ;/\

== Or “>
S |
[orT-> T,,j,2 ‘/\'.

O)
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Similarly for Wilcoxon signed rank test we have the rejection criteriaif T~ < T, orT* < T_a

or for two-sided case we will look at if any one of them is less than T« or greater than T«
2 2

depending upon whether you are doing a lower side or upper tail of the distribution.

(Refer Slide Time: 03:16)

The same test can be used for Paired Sample Test as
well.

Natural question 1s: What is Paired Sample test?

MPTEL
Now the same test can be used for paired sample test as well. Natural question is what is paired

sample test?
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) Paired Sample

Typically used for comparing two population means where
dala consisls Lwo samples in which observalions in one
sample can be paired with observations in the other sample.

Typically both the observations are on the same sample unil.

For example, before-and-afler obscrvations on (he same
subjects, such as

*  Effect of some specific diel on childrens’ growth

+ [iffect of a drug in lowering blood sugar./

|
b 5 v » 5 - |
+ Effect of a course on a candidate’s progamming skills

7. 9 Recall that for Parametric case one uses Paired L-Lesl.
[ :
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So let me first illustrate that. Typically a paired sample test is used for comparing two
population means where data consists of two samples in which observations in one sample can
be paired with observations in the other sample, okay. Typically both the observations are on
the same sample unit. For example before and end observations on the same subjects, such as
effect of some specific diet on children’s growth or effect of a drug in lowering blood sugar or

effect of a course on a candidate’s programming skills.

Why these are called paired sample test? Because in all these cases we look at a subject and we
see, say for example the blood sugar case before administration of the drug what is the value
and after administration of the drug what is the value. So, this is the difference which may be
considered the effect of the drug and then we need to see whether this effect is significant or
not.

So that is why these are called paired sample test and recall that for parametric case we use

paired test for paired t test for such situations.
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Paired sample forms of the Sign test and the Wilcoxon Signed
Rank lest can be used when the assumplion of normality of
the paired differences (required for a L-lest) does nol hold.

5
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0
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But t test assumes normality of the data when we do not have that assumption then we cannot
use t test and therefore we have to go for nonparametric testing of hypothesis and in particular
we want to use the same Sign test and same Wilcoxon Signed Rank test on the data which is

coming from paired samples.

(Refer Slide Time: 05:36)

Consider a random sample of pairs
(X1, Y1), (X2, Y2) .. (Xn, ¥n)

For this sample n differences| I)lt- X;- Y, are caleulated

The test statistic is based on the median of the differences
of the paired observations across the two samples

P
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So consider a random sample of pairs (X;,Y;), (X3, Y5), -, (X, Yy). For this sample
n differences can be calculated D; = X; — Y; that means what it was before and it was after. So

that gives you the difference and then the test statistic is based on the median of the difference



of the paired observations. So | hope the concept is clear. Earlier we were looking at sign test

or signed rank test for either X or Y.

Now since we have paired values we look at the difference and we are going to apply the same

technique on the D;s.

(Refer Slide Time: 06:27)
Paired Sample Sign Test
[f the population of paired differences satisfies the assumptions
underlying the sign test:
*  population of paired differences is conlinuous

* paired differences arc randomly sampled, —

We apply Paired Samples Sign lesl jusl as in Lhe single sample
case with X, replaced with D,.

Ho: Median of the Ds is d,
= E e e O
H,: Medianof the D/'s #d,

/'/.. e —
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So what we will do in a paired sample Sign test. If the population of paired differences satisfies
the assumptions of underlying sign test, right?. What is that? The distribution is continuous and
the sample is random. If these two assumptions are satisfied then we are going to use paired
sample Sign test where the H, or the null hypothesis is that median of the D;s is d,, versus
median of the D;s is not equal to d,. So for example we are looking at only two-sided test.
(Refer Slide Time: 07:09)



Paired Sample Wilcoxon Signed-Rank Test

Il additionally (he distribulion of differences is symmelric,
then we use the Paired Samples Wilcoxon Signed Rank test

D,,D, D, asthe given random sample of observations
From population with median d,

I/-b
F
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If in addition to that we can also assume that the differences are symmetric than we can use
paired sample, Wilcoxon Signed Rank test and then Dy, D,, ---, D,,, are the given samples. We
may test if they are coming from a population with median is equal to 0 or they are coming
from a population with a median is equal to d,. In the later case we have to further modify the
data as follows.

(Refer Slide Time: 07:46)

In both cases we test the null hypothesis Ho: M, =d,,

)~ “a

where M), is the median of the differences ;.
Typically the hypothesized median d, = 0.

If d,is non - zero then D, may be lakenas X, - Y, - d,

I/-‘
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When the H, is that median is equal to O then there is no problem because that is typically the
case, but if dy, # 0, then we shall look at X; — Y; — d, and then we will check if there is any,
so that this now becomes zero centered and then we can test the null hypothesis.

(Refer Slide Time: 08:14)



Tustration
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Suppose a set ol 9 boys are given some nourishment course to
test whether it has any effect on their weights.

The observation is as follows:

Bl [R2 [B3 [B4 [BS [B6 [B7 [BS [BO
Weight 40 [42 [35 [38 [390 [45 (8 [31 [37 | &e—
Before X { L A
Weht (42147 [39 [[41 [37 [44 (%2 [34 [363
After v 5 v
Difference [12 [+5 |14 |13 |2 |-1 |4 |13 |-05

v / \ v Vi \ 7 ‘.

13

So, suppose there are 9 boys are given some nourishment and suppose their weights before the

course are these 40, 42, 35, 38, 39, 45, 28, 31 and 37. Now after the course is complete their

weights are measured again and we found this is the weight after the course is done. The boy

with 40 has now become 42 with weight, the boy with 35 now has a weight gain 39, and

similarly the one with 37 now has a weight 36.5.

So we are looking at Y; — X; that is the gain after the nourishment course. So we find that the

difference is +2,+5, +4,+3,—2,—1,+4,+3 and —0.5. (Refer Slide Time: 09:22)
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Case1: Ho: My=0
The relevant data is:

-2 |1 -05 |42 [+3 |+3 [+4[+4 | +5]

Statistic: N™ = 6 N”-3 Since T is too
Small we may

Sig ank Test: 2
Signed Rank Test suspect MD S

[1 [-0.5[+2 [+3[+3 [+4 [+4 [ +5
352 | 1 [35 (5555 [75]75]9

'
LS

(3%

Statistie: T" = 385 T =65

18

Therefore, our focus of attention is now this vector when we put them in sorted order of

magnitude — 2, — 1, — 0.5 these are the negative gains and +2, +3, +3, +4 etcetera these are

the positive gains. Now H,: M, = 0 that is whether there is no gain or in other words whether



the median is equal to O for the difference. Therefore the corresponding statistic is going to be
N*tand N~.

We see that there are 6 of them which are positive and 3 of them, they are on negative side.
Therefore, we know that we have to look at binomial Bin(9,0.5) and we have to see the
cumulative probability of N~ and from there we should be able to decide whether to accept
this or reject. When we are going for signed rank test then in the sorted order this is the values

that we have.

We are now instead of just counting we are giving ranks to them. The smallest one in magnitude
is 0.5 therefore it gets the rank 1, the second smallest is magnitude wise 1 therefore it is getting
the value 2. Third has, this and this, both of them absolute value 2 so they should get average
of 3 and 4 that is why they are getting 3.5 and 3.5. Similarly these two are getting average of 5

and 6 these two are getting average of 7 and 8 and this one is getting the value 9.

Therefore T™ is going to be 38.5 and T~ is going to be 6.5. As you can see from here it is 6.5
and since the sum is going to be 45 we can easily get that this is going to be 38.5. Therefore
since T~ is too small compared to T* we suspect that the median of D can be greater than 0
therefore we need to test that.

(Refer Slide Time: 12:01)

T'wo-Tailed Test One-Tatled Test
a=05 a=01 a=05 a=.0l
5 % - 0

a 3

‘ 5

9 5 | Cp 3
10 8 3 10 5
I 10 $ 13 7
12 13 7 17 9
13 17 9 21 12
14 21 12 25 15
15 25 15 30 19
16 29 19 35 23
17 34 23 41 27
18 40 27 47 32
19 46 32 53 37
20 52 37 60 43

7 21 58 42 67 49
e

. "

So we go back to our Wilcoxon signed rank test tablet. We have the value 9 and at 5% level
we have the critical value to be 8. And since our obtained value is 6.5 which is less than 8

therefore we reject the null hypothesis.
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Case1: Ho: Mp=0
The relevant data is:

[2[1]-05 [+2 [s3]+3 [+4 ]+a]45]

Statistic: N" = 6 N™=3

Since T is too
Small we may
suspect My > 0

Signed Rank Test:

—
—_—

2 (1 |-05[+2 [+3 [+3 |+4 |+4 | +5
352 | 1 [35(55(55|75]75]9

»}&) Statistic: T" = 385 T =65
Nﬁ@.. L6 |

Case 2, that means that we are not accepting that M, = 0 that means that we are rejecting M, =
0 in favor of M, > 0.

(Refer Slide Time: 12:44)

Case2: Ho: My=2 //

Sign Test A
o
: N
The relevant dala is: =

4 ‘-3 lzs 0 [+1 |+1 +2 |42 \+3

- —==

Statistic: N" = 5§ N™=3

—c

e ISR
[4Y |3 |25 [0 |44 [+2 42 [43)]
?5* 65 | 5 15 15 |35 35 | 65

—

Signed Rank Test: D =Y —X—do (When do=2)

G Statistic: T = 16.5 T"=19.5

PTE
MPTEL ”

Now let us look at the second case when we are looking at M, = 2. Therefore now my statistic

is going to be we are going to subtract 2 from all of them therefore we are getting
—4,—3,—-25,0andthenl, 1,2, 2and 3.

Therefore, when we are applying Sign test we are getting N* = 5and N~ = 3 because we are

discarding this as it is same as the value 0. And since it is zero centered therefore we discard



that value 0. Now we can see that N* and N~ are very close therefore Sign test cannot reject
MD = 2

On the contrary suppose we are using signed rank test. Then in this case again we assign the
ranks to the deviations and we get these two are getting 1.5 because average of 1 and 2, these
two are getting 3.5 average of 3 and 4, this is getting 5 this and this together are getting 6 and
7 average that is 6.5 and this is the maximum one in absolute value therefore getting the rank
8. Therefore if we consider T*itis 1.5+ 1.5 + 3.5 + 3.5 + 6.5 = 16.5 thus, T* = 16.5and
T- =195

Again | am not going into the table to check whether we can accept or reject the null hypothesis,
but we can see that T* and T~ are very close to each other we can say from here, we cannot
reject the null hypothesis M, = 2.

(Refer Slide Time: 14:52)

Note:

1. Mp = 0isrejected against Hi: My =2 does not mean
M, =2 is the actual correct option.™

2, Infacl may be if the alternative is My, = 1.5 still H, will

be rejected. —

3. Hence it is correct to say H, is rejected.

()
Note that M, = 0 is rejected against M, = 2 does not mean that the median of deviation is
actually 2. It is only that, against M, = 2 we are going to reject M, = 0. In fact instead of 2 if

we are testing against say M, = 1.5 or say M, = 2.25 we may find that we are still rejecting

Mj = 0 against the corresponding alternative.

Therefore, we are rejecting a null hypothesis does not mean that the alternative is true. So,
instead of saying that accepting the alternative we should say that H, is rejected. So this is

generally true for testing of hypothesis even for parametric cases it does not mean that rejection



of null hypothesis in against some particular alternative actually means the value of the
alternative is the correct one.
(Refer Slide Time: 16:08)

Comparison of Central Locations of Two Populations

1/‘.
)
So this is about paired sample test now we are going little bit ahead we want to test the centrality

of two different populations. How to do that?
(Refer Slide Time: 16:22)

A basic mathematical concept here is Linear Rank Statistics

7ix
The basic mathematical concept here is that of Linear Rank Statistics. | shall introduce you to
linear rank statistics, but the actual mathematical property of linear rank statistic we shall study

in lecture 5..



(Refer Slide Time: 16:39)
Lincar Rank Statistics

Assume we have two independent random samples X, X, .. X,

and Y, Y,, .. Y, drawn from two populations with continuous

distributions Fy and Fy respectively.

We want fo test if X and Y have similar distribution.

The null hypothesis of identical distribution i.c.

Hy Fy(x)=Fyp(x) = Fx) Vx

where 1is unspecified

()
So what is linear rank statistics? Suppose we have two independent random samples
Xy, X5, , X, from X population and Y;, Y5, -+, Y;, drawn from another population. They have
continuous distribution Fyx and Fy respectively. We want to test if X and Y have same or similar
distribution. Thus, when we are comparing the distribution function of two different
populations we are trying to check if Fy(x) = Fy(x) is equal to some common distribution
function F(x) which is not specified to us. So in effect we are checking if these two samples
are coming from the same population.
(Refer Slide Time: 17:34)

Linear Rank Statistics

As a first step: we combine the two samples temporarily.

Thus we have a single set of & m + n random observations from
the common but unknown population to which integer ranks 1, 2, 3

.. N can be assigned.

A functional definition of rank of an observation in the combined

sample with no ties can be given with the help of Indicator Variables

as follows 7% 5 LD ll/
PO S ¢
Lel Z:(Z,.ZS_Z,\.-)_ 2\=2;22u = |
" where Z, = tifthe # observation is an X observation 2 z_:z‘a'o
( " 0ifitis an Y obscrvation
MFTEL
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So how we proceed? We proceed as follows. As a first step we combine the two samples
temporarily that means we make one array made of both X and Y populations in that array

therefore there will be N = m + n many observations and we can assign them ranks 1, 2, 3 up



to N if there is no ties. In case of ties of course we can take appropriate average to give the

ranks. So that the total sum of rank remain same whichisequalto 1 + 2 + ---+ N.

A functional definition of rank of an observation in the combined sample with no ties can be
given with the help of an indicator variable. So let Z = (Z,,Z,, -+, Zy) is a vector of indicator
variables where Z; = 1 if the i*" observation is an X observation and Z; = 0 if it is an Y

observation.

Say for example suppose my observations are 2, 5, 6, 9 and 11 where these are X and these two
are Y. Therefore, Z, = Z; = Z, = 1 because first, third and fourth observations are from X
therefore they are getting the value 1 and Z, = Zs = 0 because these two are from Y
population. So, that is how we get an array of size capital N with binary values either 1 or 0

depending upon whether it is from X or from Y.

(Refer Slide Time: 19:53)

Linear Rank Statistics

In a similar manner we can define indicator variables
corresponding Lo Y, with roles of Xand Y in the above

definition interchanged.

pa
(+)
Of course, one can do it in the reverse way one can give value 1 for Y observations and the

value 0 for X observations, but in that case also the treatment is very similar.
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Lincar Rank Statistics

The rank of an observation for which Z, is an indicator is i,

Therefore, the vector Z indicates the rank-order statisties of
the combined samples and additionally identifies the sample
to which each observation belongs.

An important class of statistics which can be expressed in
Lerms of this notation is called a linear rank statistic,
defined as a linear function of the indicator variables , as

- K

=20 ¥

&
() Xait, 2, % Zw
— I\LI o

7 where @;s are given constants called weights or scores.
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Now, the rank of an observation for which Z; is an indicator is i. That means that for Z; the
rank is going to be 1, the one that is corresponding to Z, it will have rank 2 and the one that is
corresponding to Z, that will have rank N in the sorted array. A linear combination of the Z
values Ty (2) = Y%, a;Z;, is called a linear rank statistic where ajs are given constants called
weights or scores, depending upon the problem we can change the value of ai to understand

certain properties.
As | have said earlier that we will look at some such mathematical properties when we shall be
in our lecture 5. For the time being we are not going into the mathematical details rather we

shall see how we can compare the distribution of two population or two population medians.

(Refer Slide Time: 21:28)
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So what we are testing? We are testing the null hypothesis that m; = m, that means that if m,
is the median of X population and m, is the median of Y population, we are checking whether
these two populations have the same median. But notice that having the same median does not
mean that these two populations have the same distribution we shall also have to look at the

dispersion of these two populations which we shall look at in lecture 4, which is called a scale

problem.

For this lecture we are just looking at the commonality of the central locations and our statistic

is therefore appropriately defined, but our null hypothesis is that Hy:m; = m, or Hy: D =

These tests are applicable when the observations relate Lo two
independent samples, not paired, for testing whether the location

paramelers are same for two populalions.

P
- Welian B A

r

|
Hence, we have the null hypothesis - Ho: nty =mp, . Vabian &

v

orequivalently 7 .= ()
Where m, and m, are the population medians of the two
independent samples X and Y, respectively, and D=m, - m,

—

0 that means the difference of the two medians m; and m,, is equal to 0.
(Refer Slide Time: 22:47)
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What can be the alternative? The alternative can be as before it can be m; > m, or D > 0,

The alternative may test if one sample’s median is shifted to

the Right or left of the other, i.e.

Hi: m>m, Or m,<m, Or m #m,

py0 DO DFC

m; <myorD <0,my#myor D+0.

L)
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With this background we study the two major tests :

" Wilcoxon Rank-Sum Test
* Mann-Whitney U Test

Fin
With this background we study two major tests which are called Wilcoxon Rank-Sum Test and

Mann-Whitney U test.
(Refer Slide Time: 23:24)
The Wilcoxon Rank Sum Test

Here the original data from two independent samples
(say, X and Y) are Lransformed inlo their ranks.

It Lests whether two population medians are equal.

Assumption: The only assumption is that X and Y are two
continuous distributions. =

Method

In the Wilcoxon Rank Sum test, the two samples are
temporarily combined, and the ranks of the combined data
values are calculated.

The ranks are assumed separately for each sample.

0

HPTEL
In Wilcoxon Rank Sum Test, the original data X and Y are from two independent samples we
want to test whether these two populations have the same median. The only assumptions that
is made is that X and Y have continuous distributions this is very important. What is the
method? In Wilcoxon Rank Sum Test the two samples are temporarily combined and the ranks

of the combined data values are calculated and then we look at the ranks for X and Y separately.
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The Wilcoxon Rank Sum Test

Let

\/Ii‘ be the sum of the ranks for the first sample (x,, x,, ... X))

]\2)/1)0 the sum of the ranks for the second sample (y,, y,, ... y,)

The two populations are pooled together and a rank is given to
AlltheN=m +n clements.

P
The Wilcoxon Rank Sum test statistic is typically denoted asi\VD
which is either Ry or Ry

7__—%—3,&——%—~—«+—x-—~*

()

So let Ry be the sum of ranks for the X samples that means we have m observations
X1, %5, *, Xm. In the pooled array they need not be consecutive. So maybe these are the X
observations therefore their ranks are not in continuity 1, 2, 3 like that. Therefore we just
consider the ranks of these observations and sum them up that is going to give you Ry. In a
similar way the observations coming from the second sample their sum is called Ry together
they have capital N many elements and the rank sum statistic is going to be called W which
can be Ry or Ry.

(Refer Slide Time: 25:04)

Example
Consider the data ;

m= 5 x 657~/ % |61,/ 67 /|56, |
n=4 Y |78 |65, |68 72 “

Their combined ranks are:

m=5 |X 65_j 76 | 61, 67 4o 56
35| @) @] G| 0
n=4 Y | 78 65'/ 68 | 72
(9) | (35) | (6).] (7)

Therefore Ry= 19.5 and Ry=25.5 142 -+ 9
- herefore Ry~ 19.5 and Ry=255 S I
Ok — -

HPTEL
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Let me illustrate with an example. Suppose there are 5 X observations and 4 Y observations.
Now we sort them together and give them the ranks, the smallest one of them is 56 so it is

getting the rank 1. The second smallest is 61 it is getting the rank 2, the third smallest is 65, but



there is another 65 among the Y so both of them are getting the rank 3.5, the fifth one because
they are taking care of 3 and 4, the fifth one is 67 so that gets the rank 5 and in a similar way

we give ranks 6, 7, 8 and 9.

Therefore Ry which are the blue ones is the sum of these ranks whichis5 +14+ 2+ 8 + 3.5 =
19.5, thus, Ry = 19.5 and Ry is therefore goingtobe 7 + 6 + 9 + 3.5 = 25.5, thus Ry = 25.5.
Therefore from this given observation we calculate Ry and Ry any one of them can be used as
a statistic.

(Refer Slide Time: 26:26)

(Observe: ‘

Since the total sum of ranks is |
NN+ (ntm)(ntm+1) N = new
2 ] ‘

the sum of ranks Ry and Ry are closely knil.

%

But before that let us observe that the total sum of rank is going to be XY — @rm(imt by,

is because N = n + m. Therefore Ry and Ry are very closely related because their sum is equal

to constant. If you look at the previous one this sum is equal to 45 and because there are 9

elements the rank is goingtobe 1+ 2 + -4+ 9 = 210

= 45. Therefore their sum of the Ry

and Ry is constant for a given sample size.
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If the two distributions have same central location i.c. D=0
Then one would expect the two samples will be intermingled
well.

X \("‘I)E * X 77'

One sided Allernalives. RS &4 * Y

*

Caser: D>o0 ie.m, >m,

Most- higher ranks values are expected to be frml,“(.
Case2: D<oie. m, < m,
Most higher ranks values are expected to be from Y.
Two sided Allernalive

D # 0 if the sum of the ranks of the X’s is either too large

" a1 N Qm e
{9 or too small.

MNPTEL

If the two distributions have the same central location that is D = 0 then one would expect that
the two samples will be intermingled well. Now what are going to be the alternatives, D > 0
that is m,; > m, as we have already discussed, D < 0 thatism; < m,and D # 0 thatism,; #
m,. Now suppose m, > m,. When do we think that? Most higher rank values are expected to

be from X.

So suppose this is the combined population and m, is bigger than m, then we would expect
that the higher values in the combined population are coming from X. So that we could expect
the median is on this side, but if these are the only values that is coming from Y we would
expect the median is going to be somewhere here. So that is the intuition that works behind
choosing the criteria.

(Refer Slide Time: 28:44)



Let us assume we consider the test statistic W is sum of ranks
of X.

The Wilcoxon Ranksum z 1z, teststatisticis W:
s} =

where

Z; is the indicator variable corresponding to the set X.

(%
So let us consider the sum of ranks for X that is Ry. Therefore the statistic w =YY, iz,
because we have defined Z;to be 1 when the observation is coming from X and therefore,
¥N | iZ; is going to give us the Wilcoxon rank sum statistic Ry.
(Refer Slide Time: 29:10)

Relook at the Example

Consider the data :

5 X [65 |76 |61 67 |56
n=4 Y (78 |65 |68 72

Their combined ranks are:
m=5 X |65 | 76 | 61 | 67 56
35| @® | @] G| 0
n=4 Y | 78 | 65 | 68 | 72
9) [385)]6) | @

) Therefore Ry= 195 andRy=25.5

N’[%IIEH. 38

This we have already calculated. So corresponding to this population our statistic is going to
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|
Consider W tobe the sum of ranks (Ranksum) X values.
Therefore the minimum and the maximum possible values for
Ware: 5 :
P s
ZI =15 and Z[ 35 7\-"‘7{7(‘(
el - : 12348
e _".'-__—_"" \g
ook (hat: — PR
. Check that: $(7% )
‘ \(\’3 a) Ry is distributed symmetrically around 25. RS
u.';y..p 9 ) _ 21\ S &
W "20 b) The Mean, Minimum and Maximum values for Ry, are X R0
W 20, 10 and 30, respectively. VA
%) ' 3857,
:A" = “\O

Now let us observe a few interesting things that when there are 9 observations 5 of them are
from X and 4 of them are from Y then the minimum value of Ry is equal to 15 because if there
are 9 observations the minimum value that sum of ranks will get is, the first 5 of them are from

X and therefore their ranks are goingtobe 1+ 2+ 3+ 4+ 5 = 15.

What is the maximum possible value? The maximum possible value is going to be when the
highest 5 values are taken by X therefore these are going to be 5, 6, 7, 8 and 9 and therefore
theirsumis 5+ 6 + 7 + 8 + 9 = 35 . Now this is a distribution because Ry can take the value
15 only in this way, but Ry can take the value 20 in different ways because suppose our X takes

the value second, fourth, fifth, sixth and third.

So that will give us the value of Ry = 20, but we can also get it in the form say 1, 3, 4,5, 7
that will also give us the value 20. Therefore as we look at the value of the statistic Ry we shall
find that it can take the values between 15 to 35 with different probabilities. 1 want you to check

that Ry is distributed symmetrically around the value 25.

In a similar way one can check that if we consider Ry, then minimum value is equal to 10 when
Y observations are the first, second, third and fourth in the combined sorted array the maximum
value is going to be 30 because when Y values are 6, 7, 8 and 9 then the sum of ranks is going
to be 30 and you can check that the mean is equal to 20 and it is symmetric around that value.

So this | leave it as an exercise.
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Note that;

1. Under I; the distribution of is symmetric about its mean.

2. We shall see later that under II,

m(N +1) ;
: i Er

EW)=

and —
ok mN+1)
lr(z;lM]:—12
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MPTEL
%

Let us go forward under H, the distribution is symmetric about the mean we shall see later that

m(N+1)

expected value of W is equal to —

if we consider Ry to be the statistic and variance of W

IS going to be %";“) As | said we shall prove in lecture 5.
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Case 1. Suppose H,: my > my is lrue:

In this case we would expect the sample X containing more of
the larger ranks. e
Evidence against 11, which confirms I1,: my > my is provided

by obscrved rank sum W = Ry which is unusually large according
Lo the distribution of rankKsums when H, is Lrue.
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(¥
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Now suppose H,:my > my which is true. In that case what is going to happen you would
expect that this sample X contains more of the larger ranks. Therefore evidence against H,
which confirms that my > my is provided by the rank sum W is equal to Ry, which is unusually
large according to the distribution of rank sums when H,, is true. As | said with respect to X the

smallest value is 15 but the highest value is 35.



So, if the observation we find that the sum of ranks of X is coming out to be very close to 35
that means that all the highest rank things are coming from X, lower rank elements are coming
from Y then we would expect that the median of X is actually bigger than the median of Y.
(Refer Slide Time: 33:50)

Thus, p-value for the test against the alternative H,: my > my
is equal to P(Wy > wy), where the probability is calculated
using the distribution would have if H, was true.

The value of wycan be found [rom the corresponding lable.

e
WFTEL N
Therefore, in that case we shall reject the null hypothesis if the statistic obtained from the
population is greater than equal to some critical value and where from we get the critical value?
We get the critical value from some table.
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Given m and n one can find the critical region {or a specific
Tesl and can refer Lo Wilcoxon Rank Sum Table tabulated for
different values m and n.,

In the table given below m andn are denoted as n, and n,
respectively. - (W A

Nole that to use critical values from this Lable, the Lest slatistic
is the Rank Sum associated with the smaller sample . If the two
sample sizes are equal either rank sum can be used.

Source of the Table:
hitp://faculty.fiu.cdw/-meguckd wilcoxon?20Rank?20Sum?%20Table.pd{

Given m and n one can find the critical region for a specific test and can refer to Wilcoxon
Rank Sum Table tabulated for different values of m and n. I shall give you a sample of that

table. Note that in that table m and n are denoted by n, and n, respectively. So these are the



sample sizes n, and n,. Note that to use critical values from this table the test statistic is the

rank sum associated with the smaller sample.

If two sample sizes are equal than either rank sum can be used. So, the table that | am showing
to you has been taken from this source.
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et us consider only 5% level of Significance i.e. « = 0.05

The Table has two parts: 90/
Two Sided Critical Value fora = 0.05 4 / )/4

And : /‘/",f"{/"\ — :’H‘.
One Sided Crilical Value for o= 0,05 | e Uy

: ™ A

Note that: ol
Two Sided Critical Value can also be used also for Az 008
One sided Critical Value for o = a:25 @ 925

&

One Sided Critical Value can also be used also for
7~ Twosided Critical Value for a4 0.1
0) 901

So before we see the table let me just tell you something. So consider that you are testing at 5
percent level of significance that means @ = 0.05 . Now this can be one-sided, this can be two-
sided. Hence, accordingly the table has two parts. Two-sided critical value for alpha is equal
to 0.05 and one-sided critical value for alpha is equal to 0.05. Note that the two-sided critical

value can also be used for one-sided critical value for alpha is equal to 0.025.

And one-sided critical value can also be used for two-sided critical value for alpha is equal to
0.1. So basically what I am saying suppose this is the distribution of the statistic it is the one-
sided critical value for alpha. So this is the upper side, let me call it U, and this is the lower
side let me call it L,. Therefore, we are rejecting it for a one-sided test if the statistic value is

on this side or the statistic value is on this side that is for one-sided test.

Therefore, if I am going to test it for two-sided then with equality of tails, if I consider this and
this then the total length or the confidence of this interval is equal to 100 — 2« thatis if @ =
0.05 then this is going to be 90 percent that is why we are saying that one-sided critical value

can also be used for two-sided critical value for alpha is equal to 0.1.
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So let us now have a look at the table it is given that the upper part this part is for alpha is equal
to 0.25 for one-tailed or alpha is equal to 0.5 for two-tailed. Similarly this side alpha is equal
to 0.05 for one-tailed or alpha is 0.1 for two-tailed. Therefore if | am testing for m = 4 and
n = 5 then we are looking at 5% level this value which is 27.

Therefore on the upper side if the obtained value is bigger than 27, then we are going to reject
that null hypothesis otherwise we are going to accept the null hypothesis.
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Relook at the Example

Consider the data :
m=5 |X |65 |76 |61 67 |50
n=4 [Y |78 |65 |68 72
Their combined ranks are:
n,=5 |X | 65 |7 [61]67 | 56
35| @) | @ | ()| ()
n=4 Y |78 | 065 |68 | 72
9 |35 ] 6] @
Therefore Ry= 195 and Ry =235

So let us look at this m = 5, n = 4 we have already computed this and we have found that
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Test the hypothesis IT.: my = my against IT, : my > my

—

with level of significance « =0.05 =
Thus the upper lailed critical value of one sided test for o =
0.05 is 1y 27

Thus, null hypothesis is rejected if W > 27

" ( A .
Since observed value 0[!\1@\’0 cannol reject H, al
significance level a = 0.05.

()

So at 5 percent level of significance when the alternative is that the median of X is greater than
median of Y then the critical value that we obtained from the table just now we have discussed
is 27. Therefore the null hypothesis is going to be rejected if the obtained value of the statistic

W is greater than equal to 27. However we have obtained the value is 19.5, therefore we cannot

reject the null hypothesis at this significance level « is equal to 0.05.
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Note that often it is advocated to take the W statistic to be
the Sum of ranks of the one which has less number of

observations.

In this case it is Y and/Ry = 25.5 |

Therefore we cannot reject Ho at « = 0.05

i
)
Sometimes it is advocated that you take the W statistic to be the sum of ranks of the one, out
of X and Y which has less number of observations. In our case it was Y because Y has only

four 4 observations whereas X has 5 and we have seen that Ry = 25.5. Therefore using Y also

we cannot reject the null hypothesis at 0.05.
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Normal Approximation.

For somewhat larger values of m and n (say > 10) one can use
Normal Approximation: —

/ =]} hore 7 = ( - WMaar
P E\_;_l\») ])ﬁ _/;_3_/_) wherez = (w - pls /C‘_'\ﬂ 'M'\ e

For example, m= 10 and n = 12. And value of W= 150

Using E(W) = m(N+1) it (W)_mvl\\+11 -
“l"e h('l\'e' u= llq ﬂﬂd o= 13-147 (app[ox) /‘ -\Q"_l

g S 10-1S s = B
Therefore P( W1 n)~ P(Z > e ) = p(/j\.E;D —p

= 1-0.0803 = 0.0107

B Therefore the corresponding hypothesis will be rejected at 95%
{ 9 level of significance. :
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Now let us look at the normal approximation, if m and n are somewhat large say greater than
equal to 10 then one can use normal approximation because it is difficult to compute these
tables for all different combinations of m and n. So after some point we can look at from large
sample theory and go for the normal approximation o)

P(W >w) ~ P(Z > z) wherez = %where u is equal to the mean and o is the standard

deviation.

As | have given you the values for mean and the variance or the standard deviation, but those
values we will prove again in lecture number 5. So for example when m is 10 and n is 12 and
suppose the sum of ranks of X is 150. Question is whether we are going to accept the null

m(N+1)

hypothesis or reject that one. Since expected value of W is equal to ———=and variance of W

mn(N+1)

is equal o

Therefore u = 115 and ¢ = 15.17. Therefore probability W greater than 150 after making the
normalization is coming out to be probability that a standard normal random variable Z is

greater than equal to 2.3.
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Normal Approximation.

For somewhat larger values of m and nn (say > 10) one can use

Normal Approximation: —
P( W>w =l’(/_>7) where z = (fv Wi /'A : \w /ﬁ Ao
Forexample m=10 and n=12. And value of W= IS()

Using - g(1) ="C=2 and var(W) ===

We have: p= 115 and 6= 15.17 (approx) A S

lhcrr'forcP(W>1\LO) P(Z >l50 Ay = p(bo; ———-—;\fh

15.17
= 1-0.0803 = 00107

—_————

Therefore the corresponding hypothesis will be rejected at95%

{;) level of significance.

=
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Now let us look at the normal table we can see that probability a normal distribution is less
than equal to 2.3, that value is given as 0.9893. Therefore, probability that normal variable is
greater than 2.3, that value is coming out to be 0.0107. Therefore, if this is the normal
distribution and this is 2.3 then this area is only 0.01 that means that the probability a standard
normal variable will take a value greater than 2.3 that probability is only 1 percent.

Now suppose you are testing at 5 percent level of significance therefore at 5 percent level of

significance this is going to be rejected.
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Mann-Whitney Test

-

(%)
Let us now discuss the other important test which is called Mann-Whitney Test.
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Mann-Whitney Test

The statistic computed here is called U-statistic.

Although often people club it with Wilcoxon Rank Sum test,

the statistics used in these two tests are different.

However, these two tesls are very closely Ffld}d

&
The statistic that is computed here is called the U-statistic or Mann Whitney U-statistic. Often
people club it with Wilcoxon Rank Sum test and in some literature you may find people are
calling it Wilcoxon Mann Whitney Test, but we have to remember that these two test rank sum
test and Mann-Whitney U-Test are slightly different although they are very closely related. So
we shall explore the test and then we shall see what is the relation between Mann Whitney

Test and Wilcoxon Rank Sum test.
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Mann-Whitney Test

Suppose X = {x,, x,, . x,} and Y ={y,, y,, ., Y.} are
independent samples from two distributions Fand G.

Here again we are lesling the equality of the centralily of two

distributions F and G. ot c&g qX
R dl \‘f

The U statistic is computed by comparing each element of X

with each elemenl of Y.

()
S0, SUPPOSE x4, x5, *+, X;m @nd vy, V5, -+, ¥y, are independent samples from two distributions F and
G. So here again we are testing the equality of the centrality of the two distributions F and G
where F is the cdf of X and G is the cdf of Y. The U-statistic is computed by comparing each
element of X with each element of .
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U test statistic is the count of the number of times an ¥
observation is less than an X observation in the combined
ordered arrangement of the given two independent random
samples

m n
Itis computed as: U =ZZT(X,,_V/ ) Thusitis L!lb_t.klﬁ
#1771 1A MAnY Pairs.
Where, = e
Lif y; <x
T(xy;) :[ . ‘}where,z =12, mandj = 1.2,
0ify, > x

Under the Null Hypothesis the two samples come from
continuous distributions, the possibility thal x; = y; for some
1,j need not be considered.

)

So let me explain basically what we are doing, it is the count of the number of times an Y

observation is less than an X observation in the combined ordered arrangement of the given

two independent samples. Therefore, it is computed as U= X, ¥" , T(x;y;) where

T(x;, ) = {01 .ifyj < xi} where, i = 1,2,---,m is the number of X samples and j =
if yj > Xx;

1,2,---,n, is the number of Y samples.



Now you may question what happens if y; = x;. So typically we discard such things because
under the null hypothesis the two samples come from continuous distributions. Therefore the
possibility that x; = y; for some i, j need not be considered, but in reality we may get some

such data, but in reality we may get some such data.

Therefore we discard both of them from the two populations in our subsequent computation
and accordingly the values of m and n need to be adjusted. Therefore, if we look at it we are
checking mn many pairs because each X observation will be compared to all the Y observations
and vice-versa.
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Mann-Whitney Test

Now its relationship with Wilcoxon Rank-Sum statistic W can be
checked as follows:

Suppose W is the sum of ranks of X observations in the pooled

population i.e. W = R,

" Therefore, | W/@ (say)

where R is the rank of x; in the combined sample.

(i)

Therefore R:,]\J- number ul ¥; < x) + Rank o x;among the X

observations.

'A/

Ry —LLT(\ \\+ Sum of Rankuh among the X's

el j=l =—=_ A
N

T mim+ l)

{/;) Therefore W - T+ 7
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Now question comes what is the relation between Wilcoxon Rank-Sum statistic W and Mann
Whitney U Statistic? Suppose W is the sum of ranks of X observations in the pooled population
therefore W is equal to Ry which is the sum of ranks of the X observations. So we can write

W = Y™, R this R(; denotes the rank of the i®® X observation in the combined sample.

Therefore, what is R that is the rank of the i** X sample, this is going to
(number of y; < xi) + Rank of x; among the X observations. Therefore X Ry =

Yiz1 27=1T(x;,y;) + sum of rank of x; among the X observations Now among the X’s we have

m(m+ 1)

m observations therefore the sum of ranks is going to be and therefore this element

which is nothing but the U-Statistic is coming here and from here we can find that the
m(m+1)

relationship isthat W = U + ———
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Example

Consider X |78 |66 [68 |72 &

e A e te—

Y ‘105 76 {6r {67 |56

Therefore: m‘/ and n=3 /

The combined sorted elements are!

. «./ ‘-/ . /
56 |61, |65 _66) 07 (;ﬂ 72) 76 i_78) v
1. (2. (3 .-/4 [5.16 |7 [8 |o Pl
e e - et
Wekie 42607092 Usprdsgrssio
\'\':g+(_1+2+3+4,] =U+ (4%)2 = L'+10/:1_()i£)
- ) - \-j\j s | }.x- vw}x(-m »v:\—

(%)
So let me give you an example here consider X is equal to 78, 66, 68 and 72 that is there are 4
observations therefore m is equal to 4. Y is equal to 65, 76, 61, 67 and 56 therefore n is 5. Now
in the combined population when we arrange them in sorted order it looks like this of which

the blue ones are X observations and their ranks in the combined population are 4, 6, 7 and 9.

Therefore the Wilcoxon rank sum statistic W is equal to 4 + 6 + 7 + 9 which is equal to 26.
What is U-Statistic? We are checking how many Y’s are less than each X. Therefore, we are
comparing 1, 2, 3, 4, 5 all 5 of Y’s with 66, 68, 72 and 78 that is effectively we are comparing
20 pairs of observation, but from these sorted array we can easily count that there are 3 Y’s
which are less than 66 thus | get a 3.

There are 4 Y’s, 1, 2, 3 and 4 which are less than 68 same 4 are also less than 72 and all 5 Y’s
are less than 78 that is why the U-Statistic isequal to 3 + 4 + 4 + 5 = 16. Therefore we can
seethat W = U + (1 + 2 + 3 + 4) because the sum of ranks of X elements within themselves

aregoingtobel,2,3,4thatisU + 475 therefore 16 plus 10.

m(m+1)

Hence we verify that relationship between W and U that W = U + —
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Note that
+ U=oifally’sare>x's. Sl e
i A he

« U :nwifull.v{sare >Y's
+ Therefore U tends to be smaller if all y,'s tend to be larger
than the x.'s.

Hence mostly F(z) > G(z).

i.e. Yisstochastically larger than X.

Here I'is the edf of X and Gisthe cdf of Y

i
)
Now note that U = 0 if all y; ‘s are > all x; 's,that is pretty obvious because if x;s are this and

y;s are this then all x; is less than y; there is not a single instance when an Y observation is

less than an X observation therefore the value of the summation is going to be 0. On the other

hand if all the x;s are greater than all the y;s therefore for all the mn many pairs will get a

score 1 and thus we shall get the value mn.

Therefore U tends to be smaller if all ;s tend to be larger than the x;s. Hence, mostly F(z) is
going to be greater than G(z) that is Y is stochastically larger than X. Here F is the cdf of X
and G is the cdf of .
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Similarly, if Uislarger then Y is stochastically smaller

than X therefore (—}(rz)>l"(x)v. Nz

Similarly, if U is larger than Y is stochastically smaller than X and therefore G (z) is greater

than F(z)for all z belonging to R. So let me explain this with a diagram. Suppose G (2) is the



distribution of Y and suppose it has a shape like this we know that each distribution function
at minus infinity is going closer to 0 and at plus infinity it is going towards 1 so let us call it
G(z)

Now G(z) is greater than F(z) for all z therefore how will F(z) look like. It will look like
something like this although eventually it is also going to touch 1, but most of the values for
the real number z we can see that G(z) is greater than F(z), so let us call it F(z). Therefore, what
we can say? We can say that given any particular value of z say this one, the G(z) is greater
than F(z), therefore the proportion of Y values is bigger than the proportion of X values which
are less than equal to z.

Therefore, most of the X values are going to happen on the other side of z that is on this side
we shall get more X values than Y values that is why we say that Y is stochastically smaller
than X if G(z) is greater than F(z).
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Note that

* U=o ifally'sare > x's. R
Fan ¥

*+ U=mnifallx;/sare >y;'s

* Therefore U tends to be smaller if all y;'s tend to be larger
than the x's.

Hence mostly F(z) > G(z).

i.e. Yis stochastically larger than X.

Here Fis the cdf of X and Gisthe edf of Y

®

==

Similarly, as we have seen in the previous slide that F(z) is greater than G(z) implies Y is

stochastically larger than X.
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* Under Null hypothesis F= G, U should be close lu/'i")
N 7

*  The further it is from the central value the more is the ~
chance that Null Hypothesis will be rejected.

Hence, the rules for testing are as follows:

H, i, Reject H, ‘
F2G U< et ie Uis too small ‘
) ) e —— ‘
" |F<G Uzc2 ie Uistoo large
e m— — — iz |
F+G  |[UzcgorU<cq \
7 = ie. Uis too small or too large
G B

Therefore, the test that we want to do whether they have the similar distribution that is F = G
then U should be close to mn/2 because that is the average value because the range of U is
from 0 to mn and therefore what we can see that the average value will come to be mn/2. The
further it is from the central value the more is the chance that null hypothesis is going to be

rejected.

Therefore, depending upon the alternative the rejection criteria will change. For example if
alternative is F > G then that means that Y has more spread than X that means that Y is
stochastically larger than X then we shall reject the null hypothesis if U is too small. Similarly,
if the alternative is F < G then we shall reject the hypothesis null hypothesis if U is too large

that is U is greater than equal to some critical value.

On the other hand if we have a two-sided alternative then we should check whether U is too
small or too large that is it is greater than some threshold or less than some other critical value

and based on that we will be rejecting the null hypothesis.
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These critical values are ¢

to discuss here, but let me tell you a practical way of using this. The table of critical values is

available which is called

different statistics let them be U; and U, where U, is the one that we have already discussed

These critical values are caleulated manually using Difference
cquations, which shall not be diseussed here.

We shall be using
The table of critical values for Mann-Whitney U test.

—

In these tables the minimum of U, and U, are tabulated.

-~ m n = -
/‘4 4 3 )
Where (U =)) ) Tixy) pow ey Wy A%l
\ g \ J ey i YO
1 PNV T L 9™
s s
ande e o ‘
/ g i
( \ AR ki
| U: = ZZ{ 1-T( XY }) o oAl \'?j Urg o0 .m,nma
X e qm  Awgwe N
Y 7.

Ua

The test statistic U'is Min( U, U,)
|

alculated manually using difference equation which we are not going

Mann-Whitney U Test, but for practicality we actually compute 2

ﬁl Z;’lzl T(Xi, y]) where T(xl-,yj) =1if Vi < X;j.

Therefore here we are checking how many y;s are less than how many x;s. So that gives us
the statistic U;. Now let us consider U, = ¥, ¥7_,(1 — T(x;, y;)). Note that if T(xl-,yj) =1

then this value is equal to 0 and if T(xi, yj) = 0 then this value is coming out to be 1. Therefore,

effectively this counts how many x;s are less than how many y;s.

Therefore, when we calculate U; and U, we take the minimum of them and we call that the U

Statistic.
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For a significance level o, for one tailed alternative hypothesis the
critical value C, is the left tailed eritical value

ie

the rejection region for one tailed hypothesis testing is U <,

-
(%)
So, for a significance level a for one tailed alternative hypothesis the critical value C,, is the
left tailed critical value. We will check if it is smaller than some critical value C, or not and

that is what we want to test.
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For H: F# G iLe two lailed allernative hypothesis
The table values can be used in a similar way.

’,"‘
6)
MPTEL

For H,: F # G then we shall check in a two tailed alternative hypothesis in a very similar way.
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Critical Values of the Mann-Whitney |
(One-Tailed Testing)
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So let us look at the Mann-Whitney U-Statistic for two-tailed the values are given for different
values of m and n, m and n which are given n; and n, respectively. In our case similarly there
is one-tailed testing so that the value for different m and n is given for one-sided test and the
alpha are taken to be 0.05 and 0.01.
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Revisit the Fxample

We already had this Table:

56 |61 |65 |66 |67 |68 |72 |76 |78
1-2'3-:'5435.46)‘7’_}8.9

Let =Ry=4464749=126

U1=(#of y, < 66) + (R of y, < 68)+ (R of y, < 12) + (R of y, < 78)
=344445=16_
U2=(#of x, < 56) + (#of x, <61)+ (% of x, < 68) + (of x, < 6T) + (¥of x, < 76)

“0504051+34
0 e gl
Therefore l= Min (U1, U2) =M_in[l(_),_4) =4.

Since the one-lailed Critical value fora =0.05 is 2, and U> 2

@) we do not Reject the Null Hypothesis. —
kY

So let us revisit the example. We have this is the sorted value we have already calculated Ry =
26, U; 1s coming out to be how many Y’s are less than X this also we have computed to be 16
I am not repeating that, but in a similar way U, is going to be this is going to be 0 for this

because no X is smaller than this Y, 0 for this, O for this, O for this therefore we got 3 0s.



It is going to be 1 for 67 because there is an X value smaller than this and this is going to be 3
for 76 as there are 3 X value smaller than this therefore the value of the statistic is 4. Hence,
Mann-Whitney U-Statistic is equal to minimum of 16 and 4 is equal to 4. So suppose we are
now looking at one-tailed critical value for alpha is equal to 0.5. If we go back to the table for
one-tailed, for 0 and 5 the value at 5 percent level is given out to be 2. Therefore since U is
greater than 2 we do not reject the null hypothesis.
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Normal Approximation

For relatively large values of m, n, (say > 20), critical values may

Be difficult to compule, hence one may use Normal Approximalion

with Mean and Varianee of U to be:

Vi
/mn ma(N+1) :
| T/) and | ‘7 /'rcspccuvcly.

This can be computed from Mean and Variance of W = Ry the
Wilcoxon Rank-Sum Statistic.

For a relatively large values of m,n critical values maybe difficult to compute hence one may

mn(N+1)

use normal approximation with mean and variance is equal to mn/2 and respectively.

This can be computed from mean and variance of W is equal to Ry which is the Wilcoxon rank

sum statistic.
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Now we can use the fact that (U - 5&)/0 1s approximately Standard
(¥ Normal to find the related p-values and critical regions.




m(m+1)
2

m(m+1)

How we will compute? E(W) = E (U + T) =EW)+

. Now we have already

m(N+1)

stated that although we did not prove it yet that E(W) = — implies E(U) = mW+D) _

2
m(m+1) _ mn
2 2

Variance, | have calculated it, but actually one does not need to calculate explicitly because we

m(m+1)

know that the relationship between W and U are W = U + . Therefore because it is a

constant we know that variance in W and variance of U are going to be the same. Therefore,

mn(N+1)
12

we can see that same value of variance will come here which is

Therefore, we can use the fact that (U — ) /o is approximately standard normal to find the
related p values and critical regions. Okay friends | stop here today. So in this class we have
studied two important nonparametric tests namely Wilcoxon rank sum test and Mann-Whitney
Test. These are used for testing the equality of the central location of two different populations.

But as | said at the very beginning that when we compare two different distributions we not
only look at the centrality, we also look at the dispersion. Therefore, it is not enough to check
the medians of the two samples we should also check whether their dispersions are also same
nature or not, or whether we can accept that they have the same level of dispersion. The
corresponding problem is called the two sample scale problem.

In the next class we shall start with this. Okay friends | stop here today. Thank you.



