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Welcome students to the MOOC series of lectures on Nonparametric Statistical Inference. This 

is lecture number 3.  
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In the last class, we had already discussed two nonparametric tests for centrality in particular 

we have studied one sample sign test and one sample Wilcoxon Signed Rank test. In this class 

we shall see extension of the above two as follows. We shall first study paired sample test and 

also we will look at test for comparing the central location for two different populations that 

means two sample test. 



(Refer Slide Time: 01:10) 

 

For Sign test you are testing if 𝑀 = 𝑀0 and there maybe three alternatives 𝑀 < 𝑀0 when the 

rejection criteria is that 𝑁+ < 𝑇_𝛼. If 𝑀 > 𝑀0 that means that 𝑁− < 𝑇𝛼 and if 𝑀 ≠ 𝑀0 then 

either of 𝑁+ or 𝑁− is less than the corresponding critical values 𝑇𝛼/2 . Why? Because these are 

two-sided test. 

 

We have given you the explanation before, so if it is a one-sided test of size 𝛼 then we have to 

look at if the value is coming out to be beyond the 𝑇𝛼 so that we can reject. This is for upper 

side. If it is lower sided one-tailed then we will look at this and the value should fall here in 

order to reject the null hypothesis, but when it is two-sided test for equality of two populations 

this is 𝑇𝛼

2
 and this is also 𝑇𝛼

2
. And we will reject null hypothesis if the obtain statistics falls here 

or falls here.  
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Similarly for Wilcoxon signed rank test we have the rejection criteria if 𝑇− < 𝑇𝛼  or 𝑇+ < 𝑇_𝛼 

or for two-sided case we will look at if any one of them is less than 𝑇𝛼

2
  or greater than 𝑇𝛼

2
 

depending upon whether you are doing a lower side or upper tail of the distribution. 
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Now the same test can be used for paired sample test as well. Natural question is what is paired 

sample test? 
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So let me first illustrate that. Typically a paired sample test is used for comparing two 

population means where data consists of two samples in which observations in one sample can 

be paired with observations in the other sample, okay. Typically both the observations are on 

the same sample unit. For example before and end observations on the same subjects, such as 

effect of some specific diet on children’s growth or effect of a drug in lowering blood sugar or 

effect of a course on a candidate’s programming skills. 

 

Why these are called paired sample test? Because in all these cases we look at a subject and we 

see, say for example the blood sugar case before administration of the drug what is the value 

and after administration of the drug what is the value. So, this is the difference which may be 

considered the effect of the drug and then we need to see whether this effect is significant or 

not. 

So that is why these are called paired sample test and recall that for parametric case we use 

paired test for paired t test for such situations. 
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But t test assumes normality of the data when we do not have that assumption then we cannot 

use t test and therefore we have to go for nonparametric testing of hypothesis and in particular 

we want to use the same Sign test and same Wilcoxon Signed Rank test on the data which is 

coming from paired samples. 
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So consider a random sample of pairs (𝑋1, 𝑌1), (𝑋2, 𝑌2), ⋯ , (𝑋𝑛, 𝑌𝑛). For this sample 

𝑛 differences can be calculated 𝐷𝑖 = 𝑋𝑖 − 𝑌𝑖 that means what it was before and it was after. So 

that gives you the difference and then the test statistic is based on the median of the difference 



of the paired observations. So I hope the concept is clear. Earlier we were looking at sign test 

or signed rank test for either X or Y. 

 

Now since we have paired values we look at the difference and we are going to apply the same 

technique on the 𝐷𝑖
′𝑠. 
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So what we will do in a paired sample Sign test. If the population of paired differences satisfies 

the assumptions of underlying sign test, right?. What is that? The distribution is continuous and 

the sample is random. If these two assumptions are satisfied then we are going to use paired 

sample Sign test where the 𝐻0 or the null hypothesis is that median of the 𝐷𝑖
′𝑠 is 𝑑0, versus 

median of the 𝐷𝑖
′𝑠 is not equal to 𝑑0. So for example we are looking at only two-sided test.  
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If in addition to that we can also assume that the differences are symmetric than we can use 

paired sample, Wilcoxon Signed Rank test and then 𝐷1, 𝐷2, ⋯ , 𝐷𝑛, are the given samples. We 

may test if they are coming from a population with median is equal to 0 or they are coming 

from a population with a median is equal to 𝑑0. In the later case we have to further modify the 

data as follows. 
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When the 𝐻0 is that median is equal to 0 then there is no problem because that is typically the 

case, but if 𝑑0 ≠ 0 , then we shall look at 𝑋𝑖 − 𝑌𝑖 − 𝑑0 and then we will check if there is any, 

so that this now becomes zero centered and then we can test the null hypothesis. 
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So, suppose there are 9 boys are given some nourishment and suppose their weights before the 

course are these 40, 42, 35, 38, 39, 45, 28, 31 and 37. Now after the course is complete their 

weights are measured again and we found this is the weight after the course is done. The boy 

with 40 has now become 42 with weight, the boy with 35 now has a weight gain 39, and 

similarly the one with 37 now has a weight 36.5. 

 

So we are looking at 𝑌𝑖 − 𝑋𝑖 that is the gain after the nourishment course. So we find that the 

difference is +2, +5, +4, +3, −2, −1, +4, +3 and −0.5. (Refer Slide Time: 09:22) 

 

Therefore, our focus of attention is now this vector when we put them in sorted order of 

magnitude − 2, − 1, − 0.5 these are the negative gains and +2, +3, +3, +4 etcetera these are 

the positive gains. Now 𝐻0: 𝑀𝐷 = 0 that is whether there is no gain or in other words whether 



the median is equal to 0 for the difference. Therefore the corresponding statistic is going to be 

𝑁+ and 𝑁−. 

 

We see that there are 6 of them which are positive and 3 of them, they are on negative side. 

Therefore, we know that we have to look at binomial 𝐵𝑖𝑛(9,0.5) and we have to see the 

cumulative probability of 𝑁− and from there we should be able to decide whether to accept 

this or reject. When we are going for signed rank test then in the sorted order this is the values 

that we have. 

 

We are now instead of just counting we are giving ranks to them. The smallest one in magnitude 

is 0.5 therefore it gets the rank 1, the second smallest is magnitude wise 1 therefore it is getting 

the value 2. Third has, this and this, both of them absolute value 2 so they should get average 

of 3 and 4 that is why they are getting 3.5 and 3.5. Similarly these two are getting average of 5 

and 6 these two are getting average of 7 and 8 and this one is getting the value 9. 

 

Therefore 𝑇+ is going to be 38.5 and 𝑇− is going to be 6.5. As you can see from here it is 6.5 

and since the sum is going to be 45 we can easily get that this is going to be 38.5. Therefore 

since 𝑇− is too small compared to 𝑇+ we suspect that the median of 𝐷 can be greater than 0 

therefore we need to test that. 
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So we go back to our Wilcoxon signed rank test tablet. We have the value 9 and at 5% level 

we have the critical value to be 8. And since our obtained value is 6.5 which is less than 8 

therefore we reject the null hypothesis.  
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Case 2, that means that we are not accepting that 𝑀𝐷 = 0 that means that we are rejecting 𝑀𝐷 =

0 in favor of 𝑀𝐷 > 0. 
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Now let us look at the second case when we are looking at 𝑀𝐷 = 2. Therefore now my statistic 

is going to be we are going to subtract 2 from all of them therefore we are getting 

− 4, − 3, −2.5, 0 and then 1, 1, 2, 2 and 3. 

 

Therefore, when we are applying Sign test we are getting 𝑁+ = 5 and 𝑁− = 3 because we are 

discarding this as it is same as the value 0. And since it is zero centered therefore we discard 



that value 0. Now we can see that 𝑁+ and 𝑁− are very close therefore Sign test cannot reject 

𝑀𝐷 = 2.  

 

On the contrary suppose we are using signed rank test. Then in this case again we assign the 

ranks to the deviations and we get these two are getting 1.5 because average of 1 and 2, these 

two are getting 3.5 average of 3 and 4, this is getting 5 this and this together are getting 6 and 

7 average that is 6.5 and this is the maximum one in absolute value therefore getting the rank 

8. Therefore if we consider 𝑇+it is 1.5 + 1.5 + 3.5 + 3.5 + 6.5 = 16.5 thus, 𝑇+ = 16.5 and 

𝑇− = 19.5 

 

Again I am not going into the table to check whether we can accept or reject the null hypothesis, 

but we can see that 𝑇+ and 𝑇− are very close to each other we can say from here, we cannot 

reject the null hypothesis 𝑀𝐷 = 2. 
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Note that 𝑀𝐷 = 0 is rejected against 𝑀𝐷 = 2 does not mean that the median of deviation is 

actually 2. It is only that, against 𝑀𝐷 = 2 we are going to reject 𝑀𝐷 = 0. In fact instead of 2 if 

we are testing against say 𝑀𝐷 = 1.5 or say 𝑀𝐷 = 2.25 we may find that we are still rejecting 

𝑀𝐷 = 0 against the corresponding alternative. 

 

Therefore, we are rejecting a null hypothesis does not mean that the alternative is true. So, 

instead of saying that accepting the alternative we should say that 𝐻0 is rejected. So this is 

generally true for testing of hypothesis even for parametric cases it does not mean that rejection 



of null hypothesis in against some particular alternative actually means the value of the 

alternative is the correct one.  
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So this is about paired sample test now we are going little bit ahead we want to test the centrality 

of two different populations. How to do that? 
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The basic mathematical concept here is that of Linear Rank Statistics. I shall introduce you to 

linear rank statistics, but the actual mathematical property of linear rank statistic we shall study 

in lecture 5..  
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So what is linear rank statistics? Suppose we have two independent random samples 

𝑋1, 𝑋2, ⋯ , 𝑋𝑚 from X population and 𝑌1, 𝑌2, ⋯ , 𝑌𝑛 drawn from another population. They have 

continuous distribution 𝐹𝑋 and 𝐹𝑌 respectively. We want to test if X and Y have same or similar 

distribution. Thus, when we are comparing the distribution function of two different 

populations we are trying to check if 𝐹𝑋(𝑥) = 𝐹𝑌(𝑥) is equal to some common distribution 

function 𝐹(𝑥) which is not specified to us. So in effect we are checking if these two samples 

are coming from the same population. 
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So how we proceed? We proceed as follows. As a first step we combine the two samples 

temporarily that means we make one array made of both X and Y populations in that array 

therefore there will be 𝑁 = 𝑚 + 𝑛 many observations and we can assign them ranks 1, 2, 3 up 



to N if there is no ties. In case of ties of course we can take appropriate average to give the 

ranks. So that the total sum of rank remain same which is equal to 1 + 2 + ⋯ + 𝑁. 

 

A functional definition of rank of an observation in the combined sample with no ties can be 

given with the help of an indicator variable. So let 𝑍 = (𝑍1, 𝑍2, ⋯ , 𝑍𝑁) is a vector of indicator 

variables where 𝑍𝑖 = 1 if the 𝑖𝑡ℎ observation is an 𝑋 observation and 𝑍𝑖 = 0 if it is an Y 

observation. 

 

Say for example suppose my observations are 2, 5, 6, 9 and 11 where these are X and these two 

are Y. Therefore, 𝑍1 = 𝑍3 = 𝑍4 = 1 because first, third and fourth observations are from X 

therefore they are getting the value 1 and 𝑍2 = 𝑍5 = 0 because these two are from Y 

population. So, that is how we get an array of size capital N with binary values either 1 or 0 

depending upon whether it is from X or from Y. 
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Of course, one can do it in the reverse way one can give value 1 for Y observations and the 

value 0 for X observations, but in that case also the treatment is very similar.  
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Now, the rank of an observation for which 𝑍𝑖 is an indicator is 𝑖. That means that for 𝑍1 the 

rank is going to be 1, the one that is corresponding to 𝑍2 it will have rank 2 and the one that is 

corresponding to 𝑍𝑁 that will have rank N in the sorted array. A linear combination of the Z 

values 𝑇𝑁(𝑍) = ∑ 𝑎𝑖𝑍𝑖
𝑁
𝑖=1 , is called a linear rank statistic where 𝑎𝑖

′𝑠  are given constants called 

weights or scores, depending upon the problem we can change the value of ai to understand 

certain properties. 

 

As I have said earlier that we will look at some such mathematical properties when we shall be 

in our lecture 5. For the time being we are not going into the mathematical details rather we 

shall see how we can compare the distribution of two population or two population medians. 
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So what we are testing? We are testing the null hypothesis that 𝑚1 = 𝑚2 that means that if 𝑚1 

is the median of X population and 𝑚2 is the median of Y population, we are checking whether 

these two populations have the same median. But notice that having the same median does not 

mean that these two populations have the same distribution we shall also have to look at the 

dispersion of these two populations which we shall look at in lecture 4, which is called a scale 

problem. 

For this lecture we are just looking at the commonality of the central locations and our statistic 

is therefore appropriately defined, but our null hypothesis is that 𝐻0: 𝑚1 = 𝑚2 or 𝐻0: 𝐷 =

0 that means the difference of the two medians 𝑚1 and 𝑚2 is equal to 0. 
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What can be the alternative? The alternative can be as before it can be 𝑚1 > 𝑚2 or 𝐷 > 0 , 

𝑚1 < 𝑚2 or 𝐷 < 0 , 𝑚1 ≠ 𝑚2 or  𝐷 ≠ 0. 
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With this background we study two major tests which are called Wilcoxon Rank-Sum Test and 

Mann-Whitney U test. 
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In Wilcoxon Rank Sum Test, the original data X and Y are from two independent samples we 

want to test whether these two populations have the same median. The only assumptions that 

is made is that X and Y have continuous distributions this is very important. What is the 

method? In Wilcoxon Rank Sum Test the two samples are temporarily combined and the ranks 

of the combined data values are calculated and then we look at the ranks for X and Y separately.  



(Refer Slide Time: 24:06) 

 

So let 𝑅𝑋 be the sum of ranks for the X samples that means we have m observations 

𝑥1, 𝑥2, ⋯ , 𝑥𝑚. In the pooled array they need not be consecutive. So maybe these are the X 

observations therefore their ranks are not in continuity 1, 2, 3 like that. Therefore we just 

consider the ranks of these observations and sum them up that is going to give you 𝑅𝑋. In a 

similar way the observations coming from the second sample their sum is called 𝑅𝑌 together 

they have capital N many elements and the rank sum statistic is going to be called W which 

can be 𝑅𝑋 or 𝑅𝑌. 
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Let me illustrate with an example. Suppose there are 5 X observations and 4 Y observations. 

Now we sort them together and give them the ranks, the smallest one of them is 56 so it is 

getting the rank 1. The second smallest is 61 it is getting the rank 2, the third smallest is 65, but 



there is another 65 among the Y so both of them are getting the rank 3.5, the fifth one because 

they are taking care of 3 and 4, the fifth one is 67 so that gets the rank 5 and in a similar way 

we give ranks 6, 7, 8 and 9. 

 

Therefore 𝑅𝑋 which are the blue ones is the sum of these ranks which is 5 + 1 + 2 + 8 + 3.5 =

19.5, thus, 𝑅𝑋 = 19.5 and 𝑅𝑌 is therefore going to be 7 + 6 + 9 + 3.5 = 25.5, thus 𝑅𝑌 = 25.5. 

Therefore from this given observation we calculate 𝑅𝑋 and 𝑅𝑌 any one of them can be used as 

a statistic. 
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But before that let us observe that the total sum of rank is going to be 
𝑁(𝑁+1)

2
=

(𝑛+𝑚)(𝑛+𝑚+1)

2
this 

is because 𝑁 = 𝑛 + 𝑚. Therefore 𝑅𝑋 and 𝑅𝑌 are very closely related because their sum is equal 

to constant. If you look at the previous one this sum is equal to 45 and because there are 9 

elements the rank is going to be 1 + 2 + ⋯ + 9 =
9∗10

2
= 45. Therefore their sum of the 𝑅𝑋 

and 𝑅𝑌 is constant for a given sample size.  
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If the two distributions have the same central location that is 𝐷 = 0 then one would expect that 

the two samples will be intermingled well. Now what are going to be the alternatives, 𝐷 > 0 

that is 𝑚1 > 𝑚2 as we have already discussed, 𝐷 < 0  that is 𝑚1 < 𝑚2 and 𝐷 ≠ 0 that is 𝑚1 ≠

𝑚2. Now suppose 𝑚1 > 𝑚2. When do we think that? Most higher rank values are expected to 

be from X. 

 

So suppose this is the combined population and 𝑚1 is bigger than 𝑚2 then we would expect 

that the higher values in the combined population are coming from X. So that we could expect 

the median is on this side, but if these are the only values that is coming from Y we would 

expect the median is going to be somewhere here. So that is the intuition that works behind 

choosing the criteria. 
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So let us consider the sum of ranks for X that is 𝑅𝑋. Therefore the statistic 𝑊 = ∑ 𝑖𝑍𝑖
𝑁
𝑖=1 , 

because we have defined 𝑍𝑖 to be 1 when the observation is coming from X and therefore, 

∑ 𝑖𝑍𝑖
𝑁
𝑖=1  is going to give us the Wilcoxon rank sum statistic 𝑅𝑋. 
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This we have already calculated. So corresponding to this population our statistic is going to 

be 𝑅𝑋 = 19.5.  
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Now let us observe a few interesting things that when there are 9 observations 5 of them are 

from X and 4 of them are from Y then the minimum value of 𝑅𝑋 is equal to 15 because if there 

are 9 observations the minimum value that sum of ranks will get is, the first 5 of them are from 

X and therefore their ranks are going to be 1 + 2 + 3 + 4 + 5 = 15. 

 

What is the maximum possible value? The maximum possible value is going to be when the 

highest 5 values are taken by X therefore these are going to be 5, 6, 7, 8 and 9 and therefore 

their sum is 5 + 6 + 7 + 8 + 9 = 35 . Now this is a distribution because 𝑅𝑋 can take the value 

15 only in this way, but 𝑅𝑋 can take the value 20 in different ways because suppose our X takes 

the value second, fourth, fifth, sixth and third. 

 

So that will give us the value of 𝑅𝑋 = 20, but we can also get it in the form say 1, 3, 4, 5, 7 

that will also give us the value 20. Therefore as we look at the value of the statistic 𝑅𝑋 we shall 

find that it can take the values between 15 to 35 with different probabilities. I want you to check 

that 𝑅𝑋 is distributed symmetrically around the value 25.  

 

In a similar way one can check that if we consider 𝑅𝑌, then minimum value is equal to 10 when 

Y observations are the first, second, third and fourth in the combined sorted array the maximum 

value is going to be 30 because when Y values are 6, 7, 8 and 9 then the sum of ranks is going 

to be 30 and you can check that the mean is equal to 20 and it is symmetric around that value. 

So this I leave it as an exercise. 

 



(Refer Slide Time: 32:14) 

 

Let us go forward under 𝐻0 the distribution is symmetric about the mean we shall see later that 

expected value of W is equal to 
𝑚(𝑁+1)

2
 if we consider 𝑅𝑋 to be the statistic and variance of W 

is going to be 
𝑚𝑛(𝑁+1)

12
. As I said we shall prove in lecture 5. 

. 
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Now suppose 𝐻1: 𝑚𝑋 > 𝑚𝑌 which is true. In that case what is going to happen you would 

expect that this sample X contains more of the larger ranks. Therefore evidence against 𝐻0 

which confirms that 𝑚𝑋 > 𝑚𝑌 is provided by the rank sum W is equal to 𝑅𝑋, which is unusually 

large according to the distribution of rank sums when 𝐻0 is true. As I said with respect to X the 

smallest value is 15 but the highest value is 35. 



 

So, if the observation we find that the sum of ranks of X is coming out to be very close to 35 

that means that all the highest rank things are coming from X, lower rank elements are coming 

from Y then we would expect that the median of X is actually bigger than the median of Y. 
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Therefore, in that case we shall reject the null hypothesis if the statistic obtained from the 

population is greater than equal to some critical value and where from we get the critical value? 

We get the critical value from some table.  
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Given m and n one can find the critical region for a specific test and can refer to Wilcoxon 

Rank Sum Table tabulated for different values of m and n. I shall give you a sample of that 

table. Note that in that table m and n are denoted by 𝑛1 and 𝑛2 respectively. So these are the 



sample sizes 𝑛1 and 𝑛2. Note that to use critical values from this table the test statistic is the 

rank sum associated with the smaller sample. 

 

If two sample sizes are equal than either rank sum can be used. So, the table that I am showing 

to you has been taken from this source.  
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So before we see the table let me just tell you something. So consider that you are testing at 5 

percent level of significance that means 𝛼 = 0.05 . Now this can be one-sided, this can be two-

sided. Hence, accordingly the table has two parts. Two-sided critical value for alpha is equal 

to 0.05 and one-sided critical value for alpha is equal to 0.05. Note that the two-sided critical 

value can also be used for one-sided critical value for alpha is equal to 0.025. 

 

And one-sided critical value can also be used for two-sided critical value for alpha is equal to 

0.1. So basically what I am saying suppose this is the distribution of the statistic it is the one-

sided critical value for alpha. So this is the upper side, let me call it 𝑈𝛼 and this is the lower 

side let me call it 𝐿𝛼. Therefore, we are rejecting it for a one-sided test if the statistic value is 

on this side or the statistic value is on this side that is for one-sided test. 

 

Therefore, if I am going to test it for two-sided then with equality of tails, if I consider this and 

this then the total length or the confidence of this interval is equal to 100 − 2𝛼  that is if 𝛼 =

0.05  then this is going to be 90 percent that is why we are saying that one-sided critical value 

can also be used for two-sided critical value for alpha is equal to 0.1. 
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So let us now have a look at the table it is given that the upper part this part is for alpha is equal 

to 0.25 for one-tailed or alpha is equal to 0.5 for two-tailed. Similarly this side alpha is equal 

to 0.05 for one-tailed or alpha is 0.1 for two-tailed. Therefore if I am testing for 𝑚 = 4 and 

𝑛 = 5 then we are looking at 5% level this value which is 27.  

Therefore on the upper side if the obtained value is bigger than 27, then we are going to reject 

that null hypothesis otherwise we are going to accept the null hypothesis. 
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So let us look at this 𝑚 = 5, 𝑛 = 4 we have already computed this and we have found that 

𝑅𝑋 = 19.5 and 𝑅𝑌 = 25.5.
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So at 5 percent level of significance when the alternative is that the median of X is greater than 

median of Y then the critical value that we obtained from the table just now we have discussed 

is 27. Therefore the null hypothesis is going to be rejected if the obtained value of the statistic 

W is greater than equal to 27. However we have obtained the value is 19.5, therefore we cannot 

reject the null hypothesis at this significance level 𝛼 is equal to 0.05. 
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Sometimes it is advocated that you take the W statistic to be the sum of ranks of the one, out 

of X and Y which has less number of observations. In our case it was Y because Y has only 

four 4 observations whereas X has 5 and we have seen that 𝑅𝑌 = 25.5. Therefore using Y also 

we cannot reject the null hypothesis at 0.05. 
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Now let us look at the normal approximation, if m and n are somewhat large say greater than 

equal to 10 then one can use normal approximation because it is difficult to compute these 

tables for all different combinations of m and n. So after some point we can look at from large 

sample theory and go for the normal approximation so  

𝑃(𝑊 > 𝑤) ≈ 𝑃(𝑍 > 𝑧)  𝑤ℎ𝑒𝑟𝑒 𝑧 =
𝑤−𝜇

𝜎
 where 𝜇 is equal to the mean and 𝜎 is the standard 

deviation. 

 

As I have given you the values for mean and the variance or the standard deviation, but those 

values we will prove again in lecture number 5. So for example when m is 10 and n is 12 and 

suppose the sum of ranks of X is 150. Question is whether we are going to accept the null 

hypothesis or reject that one. Since expected value of W is equal to 
𝑚(𝑁+1)

2
 and variance of W 

is equal 
𝑚𝑛(𝑁+1)

12
. 

 

Therefore 𝜇 = 115 and 𝜎 = 15.17. Therefore probability W greater than 150 after making the 

normalization is coming out to be probability that a standard normal random variable Z is 

greater than equal to 2.3. 
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Now let us look at the normal table we can see that probability a normal distribution is less 

than equal to 2.3, that value is given as 0.9893. Therefore, probability that normal variable is 

greater than 2.3, that value is coming out to be 0.0107. Therefore, if this is the normal 

distribution and this is 2.3 then this area is only 0.01 that means that the probability a standard 

normal variable will take a value greater than 2.3 that probability is only 1 percent. 

 

Now suppose you are testing at 5 percent level of significance therefore at 5 percent level of 

significance this is going to be rejected.  
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Let us now discuss the other important test which is called Mann-Whitney Test.  
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The statistic that is computed here is called the U-statistic or Mann Whitney U-statistic. Often 

people club it with Wilcoxon Rank Sum test and in some literature you may find people are 

calling it Wilcoxon Mann Whitney Test, but we have to remember that these two test rank sum 

test and Mann-Whitney U-Test are slightly different although they are very closely related. So 

we shall explore the test and then  we shall see what is the relation between Mann Whitney 

Test and Wilcoxon Rank Sum test.  
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So, suppose 𝑥1, 𝑥2, ⋯ , 𝑥𝑚 and 𝑦1, 𝑦2, ⋯ , 𝑦𝑛 are independent samples from two distributions F and 

G. So here again we are testing the equality of the centrality of the two distributions F and G 

where F is the cdf of X and G is the cdf of Y. The U-statistic is computed by comparing each 

element of X with each element of Y. 
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So let me explain basically what we are doing, it is the count of the number of times an Y 

observation is less than an X observation in the combined ordered arrangement of the given 

two independent samples. Therefore, it is computed as U = ∑ ∑ 𝑇(𝑥𝑖 , 𝑦𝑗)𝑛
𝑗=1

𝑚
𝑖=1  where 

𝑇(𝑥𝑖, 𝑦𝑗) = {
1  𝑖𝑓 𝑦𝑗 < 𝑥𝑖

0  𝑖𝑓 𝑦𝑗 > 𝑥𝑖   
} where, 𝑖 = 1,2, ⋯ , 𝑚 is the number of X samples and 𝑗 =

1,2, ⋯ , 𝑛, is the number of Y samples. 



Now you may question what happens if 𝑦𝑗 = 𝑥𝑖. So typically we discard such things because 

under the null hypothesis the two samples come from continuous distributions. Therefore the 

possibility that 𝑥𝑖 = 𝑦𝑗 for some 𝑖, 𝑗 need not be considered, but in reality we may get some 

such data, but in reality we may get some such data. 

 

Therefore we discard both of them from the two populations in our subsequent computation 

and accordingly the values of m and n need to be adjusted. Therefore, if we look at it we are 

checking mn many pairs because each X observation will be compared to all the Y observations 

and vice-versa.  
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Now question comes what is the relation between Wilcoxon Rank-Sum statistic W and Mann 

Whitney U Statistic? Suppose W is the sum of ranks of X observations in the pooled population 

therefore W is equal to 𝑅𝑋 which is the sum of ranks of the X observations. So we can write 

𝑊 = ∑ 𝑅(𝑖) 𝑚
𝑖=1  this 𝑅(𝑖) denotes the rank of the 𝑖𝑡ℎ 𝑋 observation in the combined sample.  

 

Therefore, what is 𝑅(𝑖) that is the rank of the 𝑖𝑡ℎ 𝑋 sample, this is going to 

(number of 𝑦𝑗 < xi) + Rank of 𝑥𝑖  among the X observations. Therefore ∑ 𝑅(𝑖) 𝑚
𝑖=1 = 

∑ ∑ 𝑇(𝑥𝑖 , 𝑦𝑗)𝑛
𝑗=1

𝑚
𝑖=1 + sum of rank of 𝑥𝑖 among the X observations Now among the X’s we have 

m observations therefore the sum of ranks is going to be 
𝑚(𝑚+1)

2
 and therefore this element 

which is nothing but the U-Statistic is coming here and from here we can find that the 

relationship is that 𝑊 = 𝑈 +
𝑚(𝑚+1)

2
.  
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So let me give you an example here consider X is equal to 78, 66, 68 and 72 that is there are 4 

observations therefore m is equal to 4. Y is equal to 65, 76, 61, 67 and 56 therefore n is 5. Now 

in the combined population when we arrange them in sorted order it looks like this of which 

the blue ones are X observations and their ranks in the combined population are 4, 6, 7 and 9.  

 

Therefore the Wilcoxon rank sum statistic W is equal to 4 +  6 +  7 +  9 which is equal to 26. 

What is U-Statistic? We are checking how many Y’s are less than each X. Therefore, we are 

comparing 1, 2, 3, 4, 5 all 5 of Y’s with 66, 68, 72 and 78 that is effectively we are comparing 

20 pairs of observation, but from these sorted array we can easily count that there are 3 Y’s 

which are less than 66 thus I get a 3.  

 

There are 4 Y’s, 1, 2, 3 and 4 which are less than 68 same 4 are also less than 72 and all 5 Y’s 

are less than 78 that is why the U-Statistic is equal to 3 +  4 +  4 +  5 = 16. Therefore we can 

see that 𝑊 = 𝑈 + (1 + 2 + 3 + 4) because the sum of ranks of X elements within themselves 

are going to be 1, 2, 3, 4 that is 𝑈 +
4∗5

2
 therefore 16 plus 10.  

 

Hence we verify that relationship between W and U that 𝑊 = 𝑈 +
𝑚(𝑚+1)

2
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Now note that 𝑈 = 0 if all 𝑦𝑗  ′𝑠 are > all 𝑥𝑖  ′𝑠,that is pretty obvious because if 𝑥𝑖
′𝑠 are this and 

𝑦𝑗
′𝑠 are this then all 𝑥𝑖 is less than 𝑦𝑗 there is not a single instance when an Y observation is 

less than an X observation therefore the value of the summation is going to be 0. On the other 

hand if all the 𝑥𝑖
′𝑠 are greater than all the 𝑦𝑗

′𝑠 therefore for all the 𝑚𝑛 many pairs will get a 

score 1 and thus we shall get the value mn.  

 

Therefore U tends to be smaller if all 𝑦𝑗
′𝑠 tend to be larger than the 𝑥𝑖

′𝑠. Hence, mostly 𝐹(𝑧) is 

going to be greater than 𝐺(𝑧) that is Y is stochastically larger than X. Here F is the cdf of X 

and G is the cdf of Y.  
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Similarly, if U is larger than Y is stochastically smaller than X and therefore 𝐺(𝑧) is greater 

than 𝐹(𝑧)for all z belonging to ℝ. So let me explain this with a diagram. Suppose 𝐺(𝑧) is the 



distribution of Y and suppose it has a shape like this we know that each distribution function 

at minus infinity is going closer to 0 and at plus infinity it is going towards 1 so let us call it 

𝐺(𝑧) 

 

Now G(z) is greater than F(z) for all z therefore how will F(z) look like. It will look like 

something like this although eventually it is also going to touch 1, but most of the values for 

the real number z we can see that G(z) is greater than F(z), so let us call it F(z). Therefore, what 

we can say? We can say that given any particular value of z say this one, the G(z) is greater 

than F(z), therefore the proportion of Y values is bigger than the proportion of X values which 

are less than equal to z. 

Therefore, most of the X values are going to happen on the other side of z that is on this side 

we shall get more X values than Y values that is why we say that Y is stochastically smaller 

than X if G(z) is greater than F(z).  
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Similarly, as we have seen in the previous slide that F(z) is greater than G(z) implies Y is 

stochastically larger than X.  
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Therefore, the test that we want to do whether they have the similar distribution that is 𝐹 = 𝐺 

then U should be close to 𝑚𝑛/2 because that is the average value because the range of U is 

from 0 to mn and therefore what we can see that the average value will come to be 𝑚𝑛/2. The 

further it is from the central value the more is the chance that null hypothesis is going to be 

rejected.  

 

Therefore, depending upon the alternative the rejection criteria will change. For example if 

alternative is 𝐹 ≥ 𝐺 then that means that Y has more spread than X that means that Y is 

stochastically larger than X then we shall reject the null hypothesis if U is too small. Similarly, 

if the alternative is 𝐹 ≤ 𝐺 then we shall reject the hypothesis null hypothesis if U is too large 

that is U is greater than equal to some critical value.  

 

On the other hand if we have a two-sided alternative then we should check whether U is too 

small or too large that is it is greater than some threshold or less than some other critical value 

and based on that we will be rejecting the null hypothesis.  
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These critical values are calculated manually using difference equation which we are not going 

to discuss here, but let me tell you a practical way of using this. The table of critical values is 

available which is called Mann-Whitney U Test, but for practicality we actually compute 2 

different statistics let them be 𝑈1 and 𝑈2 where 𝑈1 is the one that we have already discussed 

∑ ∑ 𝑇(𝑥𝑖, 𝑦𝑗)𝑛
𝑗=1

𝑚
𝑖=1  where 𝑇(𝑥𝑖, 𝑦𝑗) = 1 if 𝑦𝑗 < 𝑥𝑖.  

 

Therefore here we are checking how many 𝑦𝑗
′𝑠  are less than how many 𝑥𝑖

′𝑠. So that gives us 

the statistic 𝑈1. Now let us consider 𝑈2 = ∑ ∑ (1 − 𝑇(𝑥𝑖, 𝑦𝑗)𝑛
𝑗=1

𝑚
𝑖=1 ). Note that if 𝑇(𝑥𝑖 , 𝑦𝑗) = 1 

then this value is equal to 0 and if 𝑇(𝑥𝑖 , 𝑦𝑗) = 0 then this value is coming out to be 1. Therefore, 

effectively this counts how many 𝑥𝑖
′𝑠 are less than how many 𝑦𝑗

′𝑠.  

 

Therefore, when we calculate 𝑈1 and 𝑈2 we take the minimum of them and we call that the U 

Statistic.  
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So, for a significance level 𝛼 for one tailed alternative hypothesis the critical value 𝐶𝛼 is the 

left tailed critical value. We will check if it is smaller than some critical value 𝐶𝛼 or not and 

that is what we want to test. 
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For 𝐻1: 𝐹 ≠ 𝐺 then we shall check in a two tailed alternative hypothesis in a very similar way.  
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So let us look at the Mann-Whitney U-Statistic for two-tailed the values are given for different 

values of m and n, m and n which are given 𝑛1 and 𝑛2 respectively. In our case similarly there 

is one-tailed testing so that the value for different m and n is given for one-sided test and the 

alpha are taken to be 0.05 and 0.01. 
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So let us revisit the example. We have this is the sorted value we have already calculated 𝑅𝑋 =

26 , 𝑈1 is coming out to be how many Y’s are less than X this also we have computed to be 16 

I am not repeating that, but in a similar way 𝑈2 is going to be this is going to be 0 for this 

because no X is smaller than this Y, 0 for this, 0 for this, 0 for this therefore we got 3 0s. 

 



It is going to be 1 for 67 because there is an X value smaller than this and this is going to be 3 

for 76 as there are 3 X value smaller than this therefore the value of the statistic is 4. Hence, 

Mann-Whitney U-Statistic is equal to minimum of 16 and 4 is equal to 4. So suppose we are 

now looking at one-tailed critical value for alpha is equal to 0.5. If we go back to the table for 

one-tailed, for 0 and 5 the value at 5 percent level is given out to be 2. Therefore since U is 

greater than 2 we do not reject the null hypothesis. 
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For a relatively large values of m,n critical values maybe difficult to compute hence one may 

use normal approximation with mean and variance is equal to 𝑚𝑛/2 and 
𝑚𝑛(𝑁+1)

2
 respectively. 

This can be computed from mean and variance of W is equal to 𝑅𝑋 which is the Wilcoxon rank 

sum statistic. 
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How we will compute? 𝐸(𝑊) = 𝐸 (𝑈 +
𝑚(𝑚+1)

2
) = 𝐸(𝑈) +

𝑚(𝑚+1)

2
,. Now we have already 

stated that although we did not prove it yet that 𝐸(𝑊) =
𝑚(𝑁+1)

2
 implies 𝐸(𝑈) =

𝑚(𝑁+1)

2
−

𝑚(𝑚+1)

2
=

𝑚𝑛

2
 

Variance, I have calculated it, but actually one does not need to calculate explicitly because we 

know that the relationship between W and U are 𝑊 = 𝑈 +
𝑚(𝑚+1)

2
. Therefore because it is a 

constant we know that variance in W and variance of U are going to be the same. Therefore, 

we can see that same value of variance will come here which is 
𝑚𝑛(𝑁+1)

12
. 

 

Therefore, we can use the fact that (𝑈 − 𝜇)/𝜎 is approximately standard normal to find the 

related p values and critical regions. Okay friends I stop here today. So in this class we have 

studied two important nonparametric tests namely Wilcoxon rank sum test and Mann-Whitney 

Test. These are used for testing the equality of the central location of two different populations. 

 

But as I said at the very beginning that when we compare two different distributions we not 

only look at the centrality, we also look at the dispersion. Therefore, it is not enough to check 

the medians of the two samples we should also check whether their dispersions are also same 

nature or not, or whether we can accept that they have the same level of dispersion. The 

corresponding problem is called the two sample scale problem. 

In the next class we shall start with this. Okay friends I stop here today. Thank you. 

 

 


