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Welcome students to the MOOCs series of lectures on nonparametric statistical inference. This is

lecture number 10. And also, this is going to be the last lecture of this series. 
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At the end of the last class I said that, I will continue with different algorithms in this class. In

particular,  we  shall  study  four  different  tests  namely,  permutation  test  which  is  used  for

comparing the distributions of two populations, Fisher's Exact test which is used for comparing

binomial populations or two binomial populations, and we shall see that it is an extension of the

permutation test. 

Then, I shall talk about Kruskal-Wallis test, it is different from the earlier ones in the sense that

here  we  will  be  comparing  more  than  two  populations.  That  is,  we  shall  focus  on  the

distributions of more than two populations. And then we will go to JT test which is a variation of

the above. That means here also we shall compare more than two population distributions. 
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So, let us begin with permutation test. So, the background is very familiar we have two samples

X and Y of sizes m and n and with sample means  X and  Y respectively.  To test  the null

hypothesis Ho, that X and Y have come from the same distribution. So, it is the same problem,

we are comparing the distribution of two different populations and we are checking whether they

can be considered to be coming from the same distribution or not. 

This works well for small sample sizes. The test statistic T is X - Y that is the difference of the

sample means. Under the null hypothesis exchangeability is justified. So, it is a new term that we

are  coming  across  I  am  explaining  what  it  is,  no  distributional  assumptions  are  needed.



Therefore, we are not assuming anything about the distributions, but reject Ho at a significance

level   when the observed value of the test  statistic  T is  extreme relative  to  H1 that  is  the

alternative hypothesis. 

Extreme means, since you are considering X - Y, if X - Y  is significantly greater than 0 that

means in the direction of positive and if it is significantly less than 0 that means, in the direction

of the negative, then depending upon the alternative hypothesis, we will have to reject the null

Ho. 
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Now, the question is how do we calculate the null distribution of T? It is calculated by finding

the values of T for all possible rearrangements of the combined sample of size m + n into the two

groups X and Y of sizes m and n. What does it mean? Suppose, this is my X and there are certain

observations and this is my Y and there are certain observations. Now, if X and Y are coming

from the same distribution,  then each possible X could have been a member of Y and each

possible Y could have been a member of X. 

That is, this total m + n many observations, we could find a  among themselves such that here

comes m and here comes n of them and under the null hypothesis they should all be equally

likely.  This is what exchangeability that we say X observation can we exchange with and Y

observation and vice versa. 



(Refer Slide Time: 05:13)

So, the following example illustrate the concept in a better way, select 4 students from a class

and randomly divide them into two groups of 2 following the curriculum A and B. That means,

there are 4 persons then we are dividing it into two groups of 2 and 2, suppose we could divide it

like that, and suppose these 2 are following curriculum A and these 2 are following curriculum

B. Now, the average that we got is for group A, since individual scores are 92 and 65.4, the

average coming out to be 78.7. On the other ends, the group B students, they have scored 73.5

and 91.9 and their mean has come out to be 82.7. 

Therefore, the observed value of T which we are calling say To is coming out to be the difference

A -  B, which is coming out to be minus 4.0. Now, we want to test under the null hypothesis,

that there is no difference in grades from the two curricula, that means, which are coming from

this population as students who are coming from this population, there is no variation in their

grades. 

That is under the null hypothesis, since you are checking the equality of central location, you are

looking at Ho is A = B and what is going to be the alternative? Looking at these we will feel

that the average of A is less than the average of B. Therefore, for this particular problem, we can

choose that H1 is equal to A <  B. That is, the curriculum B improves the grades as compared

to the curriculum A. 
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Since under Ho, the observations are exchangeable, we can permute a shuffled the observation

and hence, and  A observation could be an observation from B also and vice versa. So, this is

what I was talking about that this is what is called the exchangeability and element of A could

have come from B as well as an element of B could have come from A. However, we have to

remember  that  the  m  and  n  these  are  the  numbers  corresponding  to  the  population  A and

corresponding to population B respectively. 

So, only thing is that that has to be maintained. Therefore, under Ho all the 6 permutations are

equally likely. Why 6 permutations? Because, 4! upon 2! x 2! that is going to be the total number

of arrangements and that gives us 6 many different permutations. The null hypothesis tends to be

rejected, if the observed value is extreme in the direction of the alternative H1 that means, we

shall check if the difference  A -  B is too small or that is absolute value is very large in the

negative direction. 

And if that happens, then we will check how rare the observed statistic is to reject Ho in favor of

H1 that is the normal thing we do; we look at this, how rare it is what is the probability of getting

this value if that is too small, then we are going to reject the null hypothesis, we will assume that

actually A is giving lower performance in terms of grade improvement in comparison with the

curriculum B. 



The p value of the test is the proportion of permutations having the test statistic value more

extreme or as extreme as the observed value in the direction of the alternative. So, with that, let

us check the following table. 
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We have computed for these observations, all the 6 permutations. What does it mean? The first

row says that these two could have been observations from A and these two could have been

observations from B. Whereas, permutation two is saying that this and this are coming from

observation A and these two are coming from observation B, the middle two, 65.4 and 73.5. So,

like that for all the 6 permutations, we have computed, what is going to be the A and what is

going to be the  B and we have computed the value of the statistic T for all the 6 permutations.

What is the advantage? 

This gives us the probability of getting 1 particular value of T. Therefore, the obtained value of p

is probability T   To. Our To has come out to be - 4. Therefore, how many of them are less than

or equal to - 4? 1, 2 and 3, therefore, that probability is coming out to be 3 by 6 is equal to 0.5.

That is my complete enumeration, we can obtain the p value for a given problem. 

Quite naturally, we can do it only when the number m and n are quite small. Of course, if they

are very large, then we have to go to computer programming. In general under Ho since the

rearrangement in two groups is possible, we can calculate the exact null distribution of the test

statistic as we have computed here. 
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The p value for one sided alternative hypothesis is calculated as the proportion of permutations

having the test statistic value more extreme or as extreme as the observed value in the direction

of the hypothesis, which we have said before. Therefore, if the alternative is  X <  Y, then p

value is  probability  T   To.  If  the alternative is  X >  Y,  then p value is probability  T   To.

However, if the alternative is two sided, that is X   Y, then we shall look at the absolute value

of T    the absolute value of To that we have got and what is the probability for that one. For this

case, our alternative was that mu A is less than mu B, therefore, we will stick to this one. And we

have calculated that this probability is coming out to be 3 by 6 is equal to 0.5. 
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Similarly, if the alternative would have been X > Y, that is A > B, then that would have given

us the value 0.67 for p. And if would have looked at probability of |T|  |To| that would have given

us the value 1. 
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The example is there to show the competition needed for carrying out a permutation test. Due to

the small values of m and n, that is, we have taken only 2 and 2, the probabilities coming out to

be very high. This is because the total  number of permutation is 6. Therefore, the minimum



probability that we will get for any event is 1 by 6, it cannot be less than that, that itself is pretty

high to reject the null hypothesis at say 5 % level of significance. 

But for slightly higher value of m and n, say suppose, we have taken 5 and 6 to be the sample

sizes from the 2 populations, then the smallest probability may come out to be 1 upon 462 which

is 0.002. And therefore, when we apply permutation test here, we could get some meaningful

result even at 5 % level or 1 % level of significance. 
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Let us now go to the next test, which is called Fisher's exact test. As I said earlier, here also we

shall use the permutation test, but in a slightly more tricky way. As we see, as Fisher's exact test



is  for  comparing  two binomial  populations.  So,  what  is  Fisher's  test?  It  is  a  case where  an

experiment is designed to test a human's ability to identify or to discriminate correctly between 2

objects, a success and failure when the subject is told advanced, exactly how many successes are

there in that two samples combined? Complicated, but we will understand what I mean. 
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The subject's job is to allocate the total number of successes between the two groups, that is to

indicate how many successes are there in each population given the total number of success. So,

suppose as before there is A population and there is B population of size say m and n. And there

are some success and failure here and some success and failure here. 

And we want to check if there is any difference between the success rate of A and B. What is

given to us that total out of m + n many elements, how many successes are there? Based on that,

if we have the ability to actually discriminate, how many of them are real success, and how many

of them are failure. 
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So, what does it interpret to? So, suppose there are m tosses of a coin 1 and n tosses of coin 2.

Let A and B denote their outputs, let X and Y are the random variables denoting the number of

heads respectively. So, suppose there are m tosses here and n tosses here. Therefore, the number

of heads could be 0, 1, 2 up to m and number of heads here could be 0, 1, 2 up to n. It is given

that there are x many heads here, and they are y many heads here in second population, what

does it mean? 

We are giving that out of m + n trials, there are our x plus y many success that is heads. We want

to test whether the probability of getting an H is same for both coins A and B. So, permutation

test can be used for this problem for any sample sizes, when the marginal column totals x + y for

success and N – (x + y)  for failure or assumed to be fixed. 
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So, in some sense, we are also using the permutation test for testing the association of the two

binomial populations. So, consider two independent samples of sizes m and n from 2 binomial

populations A and B with probability of success being p1 and p2 respectively, they need not be

equal, whether we can guess it or not, if we guess then we will give equal to both of them, but

whether we could guess the actual probabilities or not, that is the question. Let the observed

number of successes be x and y. 
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So, what we are saying that this data can be represented in a tabular form there are out of m trials

x success and n - x failure for the first population out of n trials, there are y many success and n -

y many failure for the second population. Therefore, in total we have x + y many success n -  (x

+ y) many failure where capital N is small m + small n is the total number of samples. 
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In the 2 x 2 table the marginal row totals are fixed at the two given sample sizes and also x + y is

given. Therefore, given X we can easily determine the remaining three values, because we are

given m and n these  are  fixed  and also  you are  given x + y.  Therefore,  there  is  only  one



independent value, let us call it x because the moment we know it x, we know what is m - x, we

know what is y. And of course, therefore, we know what is n - y. 

That is what we are saying that given the value of x, it determines the remaining three values

once x + y is fixed. Under the null hypothesis p1 = p2 = p, then the conditional distribution of x

given the marginal totals follows a hypergeometric distribution, that means, what is going to be

the probability of x out of m many trials that is going to be  mCx,  nCy the product divided by

capital NCx+y. This happens, because under the null hypothesis that p1 = p2 = p. This sum of x

plus y itself is also a binomial random variable with parameters m+n  and p. 
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To  obtain  the  p  value,  we  use  permutation  test,  with  x  as  the  test  statistic.  To  find  the

permutations of the 2  x 2 tables,  keeping the row and column totals  fixed at  their  presently

observed values. That means, whatever value is given to us for x + y that will keep fixed and

therefore, we should be able to interchange x and y observations among themselves keeping m, n

and x+ y fixed. 

Then Ho is  rejected  depending upon the alternative by obtaining  how extreme the currently

observed value X is in the appropriate direction among all  the possible tables with the same

marginal totals, the more extreme it is the more is the evidence against the null hypothesis. I will

give you an example you will understand it right now. 
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So, let us consider that m is equal to 100 and n is equal to 120, X is equal to 60 and y is equal to

50. That means, if we look at the earlier table, we will get something like this, there are 100

many trials for the first one and 120 many trials for the second one, we have got 60 heads here

and therefore, we have got 40 failures here, we have got total 110 many success, therefore, 50

many heads there and therefore 70 many tails here and this is also going to be 110. So, this is the

table that we could construct. 

We shall reject Ho in favor of H1. Since, we are testing p1 > p2, as we can see that more number

or more proportion of trials are ending in head for the first population. Therefore, what we are

suspecting that the probability of success may be more for the first population, than the second

one. therefore, we are testing the equality of the proportions against the alternative hypothesis

that p1  > p2 such that x + y is equal to 110. 

Therefore, the exact p value can be calculated from all possible 2 cross 2 tables with the same

marginal totals as the observed one, but having a value of x as extreme as or more than that

observed value of x. For example, one possible table could have been 61, 39, 49 and 71 then that

would have give us again, 110 and 110. Like that, we could go perhaps maximum that we could

do is 100, 0, 10 and 110 and then you also get 110, 110. 

So, this is extreme. This could have been one possibility. Of course, some other possibility could

have been that there are only 50 heads and 50 tails for the first one, and 60 heads and 60 tails for

the second one. As you can understand that there can be many possible ways we could exchange



the x and y observations under the constraint that this row total is 100, this row total is 120, this

column total is 110. And this column total is also 110. Therefore, we shall actually be doing a

permutations of all the possible values, and then we will try to see what is the probability of the

obtained configuration of the table. 
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Therefore, in general for  H1 where p1 >  p2, then Ho should be rejected if the value of X is

greater than some threshold. Similarly, if p1 < p2, we shall reject the null hypothesis if the value

of X is less than some threshold T2. And for the two sided case, we will look at whether X is

greater than some threshold or X is less than some threshold T4. And the values of the thresholds

will depend upon the level of significance  that, of course, all of us understand. 
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Let me illustrate the same from Professor Fisher's real life example, a colleague of Sir Fisher

claimed that she could tell while drinking tea with milk, what is poured in the cup first, it is milk

tea. So, a person is drinking a cup of tea with milk. So, while making the tea, one can put milk

first in the cup, or one can put tea first in the cup. So, the lady claimed that she can sip and tell

which one is poured fast in the cup. So, an experiment was designed to test her claim, 8 cups of

tea were presented to her in a random order. 4 of these had milk poured first, while the other 4

had tea poured first. 



So, these are the 2 populations, there are 4 cups of tea. And these are 4 populations where tea is

first poured. So, this is milk poured first. And here tea poured first. So, she was told that there are

4 cups of each type. And she has to sip and tell whether milk was poured first in that cup or tea,

she does not know which cup is coming from which population. So, the following data show that

she was right, 3 out of 4 times on both types. 

So, does this evidence support our claim? That means out of these 4, she could rightly guess for

three, that milk was put first. But suppose for one of them she was wrong. And similarly, out of

these 4, she could tell that for these three tea was put first, but for the fourth one or one of them,

again, she failed. Does this evidence support her claim? That means we are checking whether she

is randomly guessing, or she actually could decide whether milk was put first or tea. 

(Refer Slide Time: 29:02)

So, the tables that we get is actually milk is poured first in these 4 cups. Tea was put first in these

4 cups. And she guessed that milk was poured first for 3 out of them and 1 out of these. And

naturally the other 2 values are fixed and the column totals are 4 and 4. So very, very simple

table, we have to analyze the data to see whether she actually has any such talent. 
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Now, the potential values of x at 0, 1, 2, 3, 4 and observed is 3 which is the number of cups with

milk poured first that were correctly guessed. The only other table with the same marginal totals,

more extreme then the observable is the following. That she could guess, all 4 correctly. And she

could guess, all 4 correctly. That is 4, 4. 

(Refer Slide Time: 30:16)

And the exact p value is the sum of the conditional probabilities for these two results, which is

0.2429. Because for the first one, it is 4C3, multiplied by 4C1  out of these 4, she could correctly



guess 3, that is 4C3  out of these 4 she could correctly guess for one, she could guess only for 1

that is 4C1  and for the extreme 1, it is going to be 4C4 multiplied by 4C0. 

And of course, the total number of possibilities is  8C4 the result is coming out to be 0.2429.

Hence, for level of significance 0.05 and 0.01 we cannot reject the null hypothesis, because this

value is pretty high that is, there is not sufficient evidence to suggest that Fisher's colleague has

any special power to determine whether tea or milk was put first in the cup. However, if we test

for 25 percent level of significance, then we could reject the Ho and we could say that actually

she is not guessing she really has the talent to identify which one is poured first, ok students. 
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Let us now move to one of the most prominent or important nonparametric test, which is test of

equality for k independent samples when value of k is strictly greater than 2. So, it is a natural

extension of the 2 sample problem to k sample problem when observations are taken from k

different populations such that the jth population has cdf  Fj. The size of the jth sample is nj and

the  total  number  of  sample  is  n  which  is  n1  +  n2  +  …  +  nk.  These  samples  are  taken

independently both within sample and between the samples, that means, suppose these are the

populations we have taken n1 samples from here n2 samples from here and nk samples from

here. 

So, this sampling is taken independently while taking from the population as well as they are all

independent of each other the null hypothesis to be tested is that all the k samples are drawn from

identical population. That means, we want to check if all of them have the same distribution. 
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Hence, we have the Ho is that F1(x) = F2(x) = .. = Fk(x)  for all x versus all populations are not

same, that means, they do not have the same distribution. So, we can rewrite it in the form F1(x)

- 1 = F2(1 = x) - 2 = .. =  Fk(x) - k  such that under the null hypothesis 1 = 2 =  … k,

and under the alternative there has to be at least 1 pair i j which are not the same. Because, if

they are same for all of them, essentially we are getting Ho. So, this is the null hypothesis, this is

the alternative. We are testing if we can accept or reject Ho. 
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In classical statistics typically, for this problem 1 uses analysis of variance if test for one-way

classification. The underlying assumptions for this test are that the k populations are distributed

as normal as you all know that under parametric setup, we assume normality with same variance,

but  mean shifted  and the relevant  statistic  for them is  F statistic,  which is  the mean square

between the samples divided by mean square within the samples. 
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What does it mean? It means the following that for the ith population, we are looking at the mean

of the ith sample which is  iX   and we are looking how much different it is from the overall



sample mean considering all the samples. So, ( iX  - X )2  and that we are multiplying with a ni

because there are ni many observations from the i th population and that we are summing it over

i = 1 to k. 

And we are dividing  by k -  1  because  all  k  of  them are  not  independent  because  the  total

population is constant. So, therefore, if we know n1 n2 up to n k-1, then nk is fixed and in the

denominator we have the overall sample variance  
2

, 
i

iji XX  that is the variance for the i

th population and that we are summing for j is equal to 1 to a ni for the i th population and i is

equal to 1 to k. 

We are not going into the details, but the corresponding statistic will follow F distribution with

k-1 and n-k as its parameters. Now, F test works robustly, if the sample sizes are equal. But it

does not work well with unequal sample sizes. That is 1 of the problem of parametric setup on

the top of the normality. 
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However,  in  nonparametric  scenario,  the  only  assumption  required  is  that  the  underlying

distribution  is  continuous.  That  is  one  assumption  that  we have  to  make  for  nonparametric

treatment of the above problem. 
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So, there are several tests on the basis of the same principle. The first we are going to discuss is

called the Kruskal-Wallis test, as I said, it is a very important nonparametric test and it works as

follows. Given n samples taken from k classes, numbered 1, 2, 3 up to k. Let the number of

samples from the jth class be nj as we have already defined and therefore, capital N the total

number of samples is equal to summation over j = 1 to k, nj. 

(Refer Slide Time: 37:46)



What we do in the Kruskal-Wallis test, we do the following we are testing if 1 = 2 =  … k

and it is computed as follows. Under Ho all the n samples may be considered to be coming from

the same population as you all know. Hence, in an ordered list, all the n samples are equally

likely to get any of the ranks 1, 2, 3 up to n that means, what we are doing? 

We  are  arranging  all  the  capital  N  many  observations  in  ordered  way.  Now,  if  all  the

distributions are equal, then any 1 of them can come from any 1 of the population. Hence, the

expected rank of each element is going to be (N +1) / 2 that we all know there are capital N

many observations and therefore, the mean is going to be (N +1) / 2. 
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Therefore, the expected sum of ranks of all the samples belonging to the j th class is going to be

nj multiplied by (N +1) / 2  for all j = to 1, 2, 3 up to k. Because each element has the average

rank this under the null hypothesis, therefore, the total sum of rank is expected to be nj * (N +1) /

2. Now, let us calculate actual rank that we have got from the sample. Let Rj denote the sum of

ranks of the samples belonging to the jth class. Therefore, under Ho the total sum of square of

deviation from the expected values will not be too high. 
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Therefore, an appropriate statistic is going to be how much the expected sum of rank is different

from the obtained sum of rank. So, we are making the sum of the square of the differences for i =

1 to k. So, that is in some sense giving us the idea of how much it is varying from equality of

distribution. 
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For Kruskal-Wallis test, the statistic used is 

Let us remember that, we are not going to derive it and these can be shown that is distributed

approximately as chi square with k - 1 degrees of freedom. As you all know, that chi square is

having this type of shape. Therefore, we shall reject the null hypothesis if the value obtained is

too  high,  that  is  also  intuitively  clear,  because  somewhere  we  are  looking  at  Ri  minus  the

expected sum of rank whole square. So, if that value is too high, then we are going to reject the

null hypothesis. 
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Thus, one may obtain critical region from the chi square table. Also, there are tables showing the

critical regions for different k, Kruskal-Wallis tables are available.  Consider for illustration the

following taken from this source, let us go to the table first so, it looks like this. 
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These are  the alpha for several  values  of alpha the values  have been obtained the right  tail

probability for H and the segment that I am showing it is for k = 3 and the highest number of

observation for at least 1 class is 5 and therefore, these are different combinations 5 2 1, 5 2 2 up

to 5 5 5. 



In particular, say consider 5 5 4. What does it mean? That means that there are 5 observations

from 1 class 5 observations from another class and 4 observations from the third class. If that is

the type of observation, then the critical value for 5% level of significance is 5.666 and for 1%

level of significance is 4.523. Similarly, for any combination of this type for k is equal to 3 and

the highest observation from any class is 5. 

For example, 5 4 3 that means, there are 5 observation in 1 class 4 observation in another class

and 3 observation is  another  class.  Then the critical  values are  going to be for 5% level  of

significance 5.656 at 5 percent level and 4.549 at 1% level. So, that is how we need to read the

table. 
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Now, let us go back here, each table entry is the smallest value of the Kruskal-Wallis each such

that its right hand tail probability is  the value of  given as the column header for k = 3 and

each sample size is  5.  Similar tables are available for larger values of k also, but, in practice, 1

can approximate that with a chi square distribution. Therefore, the critical values obtained for a

chi square table can be used here, when a for a particular case the degrees of freedom is going to

be k - 1 when case is  4. 
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Kruskal-Wallis  test  has the following characteristic.  Its distribution is approximately,  but not

exactly chi square, you have to remember that it is only an approximation to chi square, it is

applied when the data is not normally distributed as we have mentioned many times. Average

ranks have to be used, when there is a tie, if two observations are coming to be the same, then as

usual, we have to give them the average length. It is used when k is greater than 2 and degrees of

freedom is going to be k - 1. 
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So, let us give an example. Consider 3 class problems C1, C2, C3, there are 5 observations from

1 class, 5 observation from the second class and 4 observations from the third one and the values

given are like this 79, 13 up to 90 and you can see that these are the 14 values given 5 + 4 + 5 as

coming out from that 3 classes. We need to test whether these can be considered to have come

from the same population. 
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So, what we did we have ranked the combined population and under this ranking, these are the

ranks.  This  is  getting  the rank 9,  10 is  the smallest  therefore,  it  is  getting  the  rank 1.  And

similarly, you can see 13 is getting the rank 2, 28 is getting the rank 3, 36 is getting the rank 4

like that highest 1 is 94 which is getting the rank 14. 
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Therefore, R1 the sum of ranks for the first set is 37, R2 is 45 and R3 is 23 when n1 = 5, n2 = 4

and n3 = 5. therefore,  R12 is coming out to be 1369,  R22  is coming out to be 2025 and R32 is

coming  out  to  be  529.  Therefore,  we  are  dividing  them  by  corresponding  number  of

observations. Therefore, R12 / n1 = 273.8, R22 / n2 = 506.25 and R32 / n3 = 105.8 and therefore,

the 

 is coming out to be 885.85. 
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Therefore, the value of the Kruskal-Wallis statistic H for H the formula is given already I have

given it to you is coming out to be

 

which when we simplify, we are getting 5.62. 
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As I have already shown to you that this value is coming out to be 5.666 that is the critical value

at 5% level and 4.523 the critical value at 1% level. 
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Therefore, what decision we can arrive at is the following that since 5.62 is less than 5.666.

Therefore, the null hypothesis is accepted at 5% level of significance. 
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However, it will be rejected, if we test as 10% level of significance as the cutoff value there is

4.523 that  is  less  than  5.62.  So,  basically  what  we are  saying we get  a  chi  square  type  of

distribution at 5% level, we have 5.666, at 10% level the cutoff is 4.523 and our observed value



is somewhere here. Therefore, we cannot reject the null hypothesis at 5% level of significance,

but we can reject the null hypothesis at 10% level significance. 
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Let me now talk about another test which is called JT test named after these two scientists, it is

similar to Kruskal but there is a difference in the treatment of that alternative. So, the set of is

same, we have ni many observations from the ith population i = 1 to k and we have k many

continuous populations with the corresponding distribution functions as F1(x), F2(x) up to Fk(x).



Suppose, we want to test  whether  1 =  2 =  …  k, it is the alternative hypothesis that the

location parameters are not all same. Therefore, in JT test the alternative is written in a different

way as I have already said. 
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Here alternative is written as follows H1 is that 1   2   3   …   k

That means, we are looking at the location parameters in an increasing order of magnitude. Note

that under the location model, when i   j, the population corresponding to Fj is stochastically

larger than the population corresponding to Fi. So, pictorially what you are looking at? Suppose,

this is how  F1 is distributed and similarly then  F2 is distributed something like this, which is

stochastically larger than that 1. Similarly, for F3 which may be somewhat like this. 

Like that the distribution of the k populations, we are trying to check if the null hypothesis can

be rejected  against  this  type of alternative.  These alternatives,  now actually  what  we do we

divide it into k * (k – 1) / 2  many inequalities of two populations. 
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We were doing it in the following way. We were looking at 1   2,   1   3   … 1  k. So,

these are the inequalities corresponding to 1. With respect to 2, what we are trying to check? If

2   3,   2   4   … 2  k . Finally, corresponding to  k-1, you are just taking k-1  k.

That is what we ever say that each time you are just considering only two populations, and we

are trying to compare the allocation parameters. 

Here is the problem of testing Ho against H1 may be viewed as a collection of test problems,

each of which is a two sample problem. I hope that concept is clear. And of course, we have to

understand that at least one of the inequalities have to be strict, because if all inequalities become

equality, then it is nothing but the null hypothesis. 
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Now, JT test uses Mann-Whitney statistic Uij, for the 2-sample problem comparing the samples i

and j, where i and j belong to 1 to k with i < j. The overall test statistic therefore, is constructed

by adding the Uij in the following way, this is equal to 

So, since we have k*(k -1) / 2 many different pairs, therefore we have to compare for all of them

and we have to obtain the corresponding Mann Whitney statistic. 

Therefore, the final statistic is this sum of this 



As you can  easily  understand that  this  expression  can  be  written  neatly  concisely  like  this.

Question is how to compute Uij?
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We know that the U statistic for 2 samples X and Y in effect checks the number of times an X

observation is less than Y observation that is i = 1 to m, j = 1 to n indicator of Xi is less than Yj.

Therefore, you are looking at all pairs the Xi and Yj and we are checking how many times Xi is

less than Yj, i is indicator variable that means that if this is true, then i = 1 otherwise i = 0. 
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So, I am giving a slightly different notation. So that if you do not get confused, I am telling you

that in lecture 3 we have defined U statistic as the count of number of times that Y observation is

less than X. So, that is what we have done there and therefore we got this formula. If you want

you can go and check with your lecture notes 3, but here the difference is that they are ordered

that  means  they  went  on  talking  about  Xi  and  Xj  basically  i  <  j.  So  this  ordering  we  are

maintaining to give it you convenient notation for JT test. 
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Accordingly, the Mann Whitney statistic Uij for ith and jth sample is r is equal to 1 to ni s is

equal  to  1  to  nj.  Because  these  are  the  number  of  samples  for  the  ith  and  jth  population

respectively. And we are looking at the corresponding value whether it is less than or not. Where

Xir is rth observation in  ith sample and Xjs is the sth observation in the jth sample. Therefore,

the finally what we get 

this  we  have  already  seen  and  this  part  is  replacing  Uij  from  here  and  these  complicated

expression gives us the value of B the statistic. 
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The rejection region is large values of B, because if H1 is true observations from the jth sample

will tend to be larger than observations from the ith sample the JT test rejects Ho against our

ordered alternative H1 when B is significantly large does that exact p value is coming out to be

probability of B is greater than equal to some small b under H naught. 

Therefore, the appropriate rejection region is going to be B is greater than equal to some value

which comes as a function of alpha k and also in 1 into nk such that the probability that  B is

greater than equal to this value has to be less than or equal to alpha under Ho. 
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However, for larger samples, in practice, it is more convenient to use an approximate test if ni by

capital N tends to be some constant between 0 to 1 the distribution of the random vector U1,2

U1,3  up  to  Uk-1,k  under  Ho  can  be  approximated  by  a  k*(k-  1)/2  dimensional  normal

distribution. So, it is a multivariate normal type of distribution and the expected value of  B is

coming out to be

 

and variance of these coming out to be

 

We are not going to derive these here that is no scope. However, we know that when value is

large, then B minus expected value of B over square root of variance of B can be considered to

be a normal approximation,  where expected value of  B and variance of B can be found out

without going into the detail simply from the values of capital N and small a ni is equal to 1 to k,

right. Once we are going to use a normal test, we shall check if  B is greater than equal to the

expected  value  of  B plus  Z which  comes  from the  normal  distribution  multiplied  by  the

standard deviation that is variance of B to the power half that is the square root of the variance.



So,  that  is  how  we  actually  conduct  the  test  to  check  if  we  can  accept  or  reject  the  null

hypothesis. 
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Okay friends, with that, I come to an end. Over the last 10 lectures, we have studied a large

number  of  major  nonparametric  methods  for  testing  different  hypotheses  on  populations  on

which normality  assumptions is  not valid.  The tests  are very intuitive,  and gives us a lot  of

insight into what can be derived when the sample size is small. 

Consequently, they have huge potential for data science applications. And I hope that all those

who attended whether a teacher or a student they will be benefited from this series of lectures

and this is my sincere respect to all those great beings who have thought so nicely and who could

get so much out of small sample size that is truly amazing and truly inspiring for all of us. So,

this series of lectures is from my side as a homage to all these great minds. 

Finally,  this  series  could  not  have  been  possible  without  you  students  really  attending  and

understanding the  rather complicated subject. I could make this possible because of a lot of help,

particularly from NPTEL people of IIT Delhi, NPTEL of IIT Madras, And last, but not the least,

my teaching assistant, my student Kushagri Tandon. who understood the concept in a very short

period and helped me throughout in preparation of the lectures and framing the questions for all

of you. I hope you solve the problems and get the beauty of nonparametric statistics. Thank you.


