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So, welcome to all of you in the next class of this course, as you have already seen, how to go

ahead for numerical methods for initial value problems. In today's lecture we will implement

those numerical methods or difference schemes to solve initial value problems with the help of

Octave software. Though you can also solve those problems in Matlab software I mean that the

codes which I will be giving you here can be implemented in Matlab software also.

But Matlab is a commercial software and Octave is a freely available software that you, you

must be knowing because you have handled with Octave in the previous part  of this  course

already. So, that is why some of you are having  Matlab. You can run those codes in Matlab

otherwise you can download the octave and you can run those codes because Octave is freely

available software.

Though in Matlab software you have some flexibility but it is still the code which I am giving

you can be done in Matlab simultaneously in Octave as well.  So, if you remember from our

previous lectures, we have taken one example, which is this.
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So, we have that consider the following linear Initial Value Problem 

. So, in today's lecture, we will focus on the following example

of  Initial  Value  Problem and we will  try  to  solve  this  Initial  Value  Problem with  different

numerical methods which we have already studied in previous lectures.

(Refer Slide Time: 02:14)

So, let us, I already know. I already have a code with me, I will try to explain each line of this

code to you, so that you can type on your own code and you can go ahead with it. So, initially let

me start with the comment which I have written which is very easy. So, this is a differential

equation with the same example, I have typed in the comment part of this code and there it was

an arbitrary initial condition   now, because to solve it numerically, we have to work out for a

particular value of this initial condition which I have considered is 1.



(Refer Slide Time: 02:57)

So, after that clc clear all close all you are all you must be familiar with all those commands in

earlier part of this course. So, I am not going to explain all those commands again. And then I am

defining  the  function  in  the  following  way  f  is  equal  to  which  you  can  see  from  here,

. This is the  way I can define the function. And  then the

initial point a is 0, b is 1, ya is 1, these are some variables a, b and ya, which I am choosing in the

following way. So, and after that, I am choosing a sample point N, which is N =[ 10, 20,40]. For

a time being initially I can take only 10. And then another variable which I am considering is his

step, which is equal to 1.
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And then after that we are using the loop, for loop you must  already be familiar  with these

concepts. That is why I am not again re explaining those concepts for j is equal to 1 into length

of N length of N I am using because later on I will be working out with the array of N but right

now I have just considered one single value of 10 so length of N does not make any really big

concept here.

And then whatever algorithm of Adam Bashforth method with different order those algorithms I

have implemented in the separate functions whose name is Adam Bashforth. So, that is a very

good programming practice that whatever you should decompose your program into a smaller

component and for each component you can write down your function. So, Adam Bashforth is a

name of your functions and the argument of this function which you can observe from here is f

which is a function a b ya N(j) and a step.

I will explain to you the meanings of each argument later on and the meaning of f is clear to you,

a is  an initial point b is the point where you wanted to compute your solutions. And ya is also

final time and Nj is the total number of a grid points mash size which I was based on and you can

also define h. Basically, h =1/N , N step. So, step basically means which method you wanted to

choose under the Adam Bashforth category.
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So, accordingly I  have implemented this  algorithm in Adam Bashforth function which I  am

showing you now. So, again the prototype of this function is this which you can observe from

here function z is equal to Adam Bashforth and arguments are f a b ya N and k. So, here again I

have commented each thing that f is the right hand side of a given differential equation, a and b

are the starting and end points, ya is the solution at initial points. ya is the solution at the initial

point and N is the number of step, k is the step of Adam Bashforth.



So, here I am explaining you the meaning of each argument which we are passing through Adam

Bashforth in the main program and then we are defining  and x = a:h:b; basically if

you see we are taking this mesh from 0 to 1, so, a is 0 and b is 1. So, h to 2h this way we can

keep  going.  This  is  the  mesh we are  choosing to  compute  the  solution  of  an  Initial Value

Problem. 

So, after  that again we are taking the concept of a loop for  i  = 1:length(x) and then we are

sampling that exact solution which we already know will be in the following form. So, this is the

exact solution of our Initial Value Problem. We are also implementing an exact solution, so that

we can compute the error.
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And then we have chosen the ifelse command to categorize based on different steps. So, if k = 1

so, basically a step is it means a step is equal to 1, then as you with the help of again for loop we

are implementing the same algorithm which we already know . So,

this is the algorithm of Euler methods which we already know. So, in this Adam_Bashforth.m

file you can see how I have implemented this algorithm. 

And then what we are doing we are also computing norm of infinity norm, infinity norm. So,

norm is an inbuilt function in Octave or Matlab which computes the norm. Of course, default is 2

norm but here I am explicitly after comma I am explicitly mentioning inf So, this will  be an

infinity norm. So, y_exact is the exact solution and y is a numerical solution. So, we are basically

computing the norm of the infinity norm of the error or you can say maximum norm of the error.
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So,  that's it. So, just by computing the error we can find out whether our difference scheme is

correct or not we are going in the right direction or not. So, for that reason I am running my

program.
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So, if you see here what is the error rate undefined.



(Refer Slide Time: 10:44)

So, basically I will tell you what the problem is. So, I want my code to be run only this till this

point that is why I have just typed some arbitrary number. So, that error should come naturally

and code should stop.

(Refer Slide Time: 11:09)

So, error jk has come.
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So, now and if you see what is the output of this code, Adam Bashforth output is in the form of z

so, basically z is that is the error which if I type it here I should see what is the error. So, you see

the error is 0.08 and in our opinion this is the error corresponding to N = 10 or what you can say

corresponds to h = 1/10. So, how we have studied the convergence of a difference scheme that

 numerical solution should converge to exact solution or basically error should converge

to 0, that is what we have already seen in our previous lectures. So, for that reason, I will also

show you how error behaves with respect to reducing h. So, if I am reducing h it means I have to

increase N that is the reason that I was taking an array here. 

(Refer Slide Time: 12:33)



So, basically, here I am taking h = 1/10, 1/20, 1/40. So, I will compute the error corresponding to

this   h of course, each time h is half then previous value.  So,  h is 1/N. So, now, I am also

removing this jk which I have typed earlier to stop my code.
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So, now the error will also be in the vector z. So, error is also a stored corresponds to h = 1/10

corresponds to h  = 1/20 and corresponds to h  = 1/40,  which you can see from here.  So,  as

expected, h = 1/10, which I can write down here. So, the value which I am getting this 0.08718

corresponds to h = 1/10, 0.043019 corresponds to h = 1/20, 0.021358 corresponds to h = 1/40. 

So as expected, error is decreasing, error is decreasing with respect to  that is what we

call it as a convergence of a difference scheme or numerical method, convergence of difference

scheme or numerical method. So, we have verified that the forward Euler method is converging

by taking one particular example of an Initial Value Problem.
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In fact, if you want to see you can also see by taking this N, so here in fact, error will be for error

not will be error should be further reduced. So that is what you can type z here and you can see. 
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So, if you want to decrease the error further, you have to increase and you can go beyond 320

that is up to you, but I have just given you the flavor how you can verify that whether your

differences scheme is converging or not with the help of one particular example, which we have

already discussed in our lecture class. So, now, because just by computing error it corresponds to

1h, we do not guarantee that our differences scheme is converging, converging means as 

error should tend to 0 and that we can observe provided we have worked out for different values

of h or N, that is what we have done with the help of following examples.
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And  further,  basically,  if  we  want  to  compute  the  rate  also,  that  also  these  are  just  some

commands I have given to put the x label inviolable in the finger and then finally, with the help

of a loop, we have also computed the rate which you can observe from here. So, basically, if you

see the rate when I run this code, you will see the rate here, it is fast. So, what it means is that the

forward Euler method is first order accurate, first order accurate, that is what we have done with

abs(log2(z(j+1)/z(j))).

So, basically we are dividing the error at two different h and then we are taking the log on both

sides. So that is how we will get to compute the rate formula. So, rate is first order accurate, that

is what we have proved theoretically also earlier. And this is we have plotted error versus in y



axis we are plotting the error and enact axis we are plotting h. So, as from the figure also you can

observe the same thing which we were earlier looking at the command window that as 

so, basically we are moving to this side, our error is tending to 0. 

So, if you want to drop your error further you have to workout for a smaller h, and N will be

increased. So, then computation will also be increased. So that you have to decide for yourself

that you want how much error you want, how much accuracy you want.

So, rate formula is also given in the following way which you can observe from here rate(j) =

abs(log2(z(j+1)/z(j))). z is that is the error at j+1 and means at the second.

(Refer Slide Time: 18:24)

I mean to say that, when I am going from h and then 2h, so, we are basically dividing the error

from this to this, this is h and then we are working with 0 to h/2, h when we are working with

half.
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Because we have saved the value of z corresponds to j for each h. So that is why here we are

writing z(j+1)/z(j).

(Refer Slide Time: 19:12)

So now,  if you remember,  forward Euler  was the first  example or first  category of a Adam

Bashforth method, which corresponds to step is a first step method. And the order was also first

order accurate. So we have verified this. Now, let us work out for a second category of a Adam

Bashforth formula, which corresponds to step = 2.



Because it was a Two step method, and why I am choosing this step, correspondingly, I have

implemented  different  algorithms for  the step 1 is  and for  is  step 2 in  the functions,  Adam

Bashforth that is why I am taking this variable the step = 1 to choose forward Euler, step = 2 to

choose another difference scheme which we will see in Adam Bashforth, because we are not

calling it that by no that was just called as AB 2 method.

(Refer Slide Time: 20:22)

So, let me type out a step = 2 and then if you see if  k =1, so, the second choice if k = 1 second

choice k = 2. 
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So, for that reason, our difference scheme if you remember, let me type here also what was that

or  I  can  show  it  in  our  lectures  also,  this  was  the  schemes  So,

. This is the difference scheme AB(2). Of course,  it  is a

Two step method. That is why I am choosing it to step = 2. 

And one thing about this is that it is a multi step method, here I have written N it should also be i

and it should also be i. It is a multi step method. So, that is why if I am starting with y0, first I

have to compute y1 with the help of some other single step method and then I can compute y2

with the help of this method, that is what I have implemented this numerically also. So initially

from y1, I am going to y2 with the help of the forward Euler method itself and from y1, I am

going to y2 with the help of AB(2). 

The difference is the scheme of this AB(2) is given by the following which I have implemented

here. y(i+2) = y(i+1)+(h/2)*(3*f(x(i+1),y(i+1))-f(x(i),y(i))).
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So, if I will give the value of step which is basically k here, so, that is just a different name.
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So, the value which I will pass with the help of mean in each step will be taken by the variable k

and if I will give that as a k= 2. So, these codes which, which algorithm which I have written in

else part will get executed, which you can observe now. Because I am running a mean program

with the variable step = 2.
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So, that is again I have worked out for different  h, h = 1/10, 1/20, 1/40, 1/80, 1/60, 1/320,

because you can see the array of N correspondingly h is basically 1/N which we can observe

from the program. 
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So, what will be the error which you can also see from here after typing z. So, you can see how

much  accuracy  we  could  achieve  by  increasing  N  or  decreasing  h.  So,  that  is  called  the

convergence  of AB(2) which is  an Adam Bashforth method of order 2. Order 2 also we can

verify numerically  just by looking at  the rate which we are also computing in the following

program. So, the rate is also close to 2 as expected. Rate is also close to 2 as expected which we

are computing here.

But the only thing is we AB(2) is a Two step method. So, we have, it is not a self starting method

because from going from  to  I have to use some other single step method. And for that



reason, I am choosing the forward Euler method here locally forward Euler is  , that is

why total error will be  as well. Because when you are working with a multi step method,

you have to be really careful how you make it because these methods are not self starting.

So, you have to be very careful in choosing the method when you are going for some initial

approximation like how you are going from  to  and then if it is more than 2 steps then you

have  to  compute   also  because  you can  start  from   that  is  the  nature  of  a  multi-step

algorithm etcetera.
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So, of course, I have implemented just two different algorithms. Adam Bashforth corresponds to

step = 1 and corresponds to step = 2,corresponds to step = 1 it is an order 1 method corresponds

to step  =  2 it  is order 2 method. But, if  you want you can also implement  other high order

methods under this category, but as far as this code is concerned I have just implemented for k =

1 and k = 2. So, it should be very much clear to you.

Because you cannot give arbitrary value of a step here is step  =  3 then also AB(2) will run

because that thing I have given in the else part here if you see so, it will run for any value of k,

but the algorithm which we are implementing for any value of k is just AB(2). So, you have to

modify this code if you want high order differences schemes under Adam Bashforth category.



So, basically we have seen one method of order 1 and another method of order 2 which was a

Two step method and how to implement that Two step method that also we have seen.
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Now, we will be looking at Adam Moulton’s formula or Adam Moulton’s methods So, for that

reason I am  commenting on Adam Bashforth and I am opening the comment part of Adams

Moulton.  So,  here  again,  I  have  written  the  different  name of  the  function  which  is  Adam

Moulton; the argument of this function again remains the same as I have already discussed it an

Adam Bashforth and the output is also error which is stored in the variable z.
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So, now, I am opening the function Adams Moulton's again what are the  meanings of these

arguments that also I have explained in the comment sections. Of course, since w you can ignore

because since does not since is the only thing which I have observed, it does not work  in the

older version of the Octave, I do not know whether it runs in the latest version of Octave I have

not tried, but other things are Okay.

f is the right hand side of a given differential equation a and b are the starting and end points ya

is the solution at initial points which we were choosing 1, again N is the number of steps and k is

that step off again here it should be not k is the step of Adams Moulton. h is again defined in the



same way, x is also the array, and y1 is ya again, y exact will remain the same, because we are

solving the same Initial Value Problem, I do not need to repeat that stuff again. And corresponds

to step = 1 which is k = 1 corresponds to the Trapezoidal method.
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So, the algorithm of the Trapezoidal method we already know. I can also show you in our lecture

part, so basically,  . So, which is also  called the Trapezoidal

method or AM(1). AM(1) first method of this category. It is again a single step method, but if



you compare this with the other methods, this is an implicit method. This is the implicit method

that I have already explained in our lecture classes, why it is an implicit method?
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So, for k = 1 again the same algorithm I have implemented  here, which you can observe from

here

then again, the same algorithm which I have written here, I have been implemented here. And

then we are computing that error again there will be a difference of exact solution and numerical

solution we are computing the norm infinity norm basically.
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So, now, if we want to see the output, we have to come to the main, so, again here I have to write

a step = 1, and now I have to run the code. So, let us see how it behaves.
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Of course, corresponds, so, what I am.
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So, here again let me type out the error z error is stored in function z, so, let me typed out that

you can observe that z is so, you can see so, again the z stores the error corresponds to different

value of h, which I have already mentioned here in the these are the values of z corresponds to

which errors are here. So, again you can verify that error is tending to 0 as  which you

can observe from the graph also. So, basically in the last figure also I forgot to mention what this

black line represents and what this red line represents.
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So, as you can see that here we are in the log plot red line is basically the error actual error and a

here with the black is this is the order we are plotting. So, this you can see from here, red is the

actual error, red is the actual error and this is basically   line in case of a second order

method or  line in case of a first order method. Similarly, you can superimpose this line

depending on the order of the method which you can see from here, we are plotting loglog(h,z)

and then with the red lines and then h again this is basically   That is why when I am

taking a step = 1. 

In the case of an Adams Moulton this corresponds to order is equal to 2. So, that is why I am

plotting  the  line  .  So,  both  are  parallel,  it  verifies  that  our  method  is  second  order

accurate. Similarly, as I told you, I forgot to mention in the case of Adam Bashforth which I can

show it again. So just by commenting this line and uncommenting the previous one and here

because it is a step = 1 in case of Adam Bashforth it is a first order method. So the line should be

parallel to the line h.
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So, that is what you can see.
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And in fact, that is why here I have returned is step+1 when I was choosing the Adams Moulton

formula. So, because in case of a first order line it should be order of h in case of a second order

line which it should be . So, both the lines should be parallel, that is how we can verify

the  order  of  the  method  also  numerically.  So,  this  is  the  right  way  to  observe  graphically.

Otherwise, if you want you can also see by typing z
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And then let me change this a step size to 2 and then basically if you remember which algorithm

we will be implementing because that is we can see from here yes Adams Moulton family so, the

AM(1) is this which is a Trapezoidal which we have already seen and AM(2) is this basically

which let me also write down here -yi.
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So, now, you can check that whether we have implemented the same differences scheme called

again in this case I have implemented two differences scheme corresponds to k is equal to 1 and

corresponds to k is equal to 2. If you want it to go for higher or other method you can modify

these codes. So, y2 is basically this this is the scheme's.
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So,  again  if  you  observe  this  method,  this  is  again

 So,  this  is  again  not  a  single step  method.

This is also a Two step method. So, first we have to compute y2, so, that y2 we are predicting

with the help of TS 2 method Taylor series method of order 2 that we have also mentioned in the

commented part that how we are computing y2 using TS 2 method. So, we have implemented the



algorithm for TS 2 as well to predict y2 because y2 corresponds to basically y1 if we start from y

0 initial conditions if we think in that way. 

And then once y1 is known to us we can compute y2 but actually indexing in Matlab does not

start from 0 that is why y0 corresponds to y1 and y1 corresponds to y2. And from here onwards I

think it will start y3 onwards. So, this is again, I have made it clear how we have gone from y

naught to y1 with the help of TS 2 method. And now the reason should also be clear to you why

we are choosing TS 2 method not to forward Euler methods. Because, so that the total order of

the method should be consistent. If I am choosing a low order method to predict y1, that error

will dominate in the final part as well. So that is why to have a consistency in the order of the

method I am choosing it with TS 2.
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So because as you can see, step 2 implies order 3, that is why we are choosing TS 2 otherwise

there will be inconsistency if we choose low order method and that error will be dominated then

there is no point because if there is a low order accurate method in predicting the value of y1 and

that error will dominate in rest of the computations. So, there is no advantage if we are choosing

a higher order method for subsequent values. So, that is why initially I also said that in multi step

methods you have to be very careful how you choose the initial approximation. 

Of course, that initial approximation should also be with the consistent method and that is why in

the previous when I was taking a step 1 I have chosen Two step method we have seen in case of



a Adam Bashforth and then we have seen forward Euler and now we are predicting with the TS

2. Why there is a difference in choosing forward Euler in case of Adam Bashforth of step 2, and

in case of Adam Moulton of step 2, because this is order 2 method and this is order 3 method.

So, now, if I then correspond to step = 2, of course, here what is the expected order is 3, that is

what we are also plotting is step+1 is step=  2, so, both the lines should be parallel that is as

expected.
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So that is what you can see here, you can if you want you can also type z error is tending to 0 as

. If you want to see the or you want to observe the same thing graphically, the graph is

also in front of you again. The red line is the actual error and black line corresponds to the line or

 because this is an order 3 method . So that is what we are doing here, if you wanted to see the

rate, rate also which is close to 3. So, in this case also we have verifiy that our method is third

order accurate.
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Now, we are going to  the third category  of  the method which we have learned in  previous

lectures. I am commenting on Adam Bashforth, Adam Moulton's because I am explaining to you

all these different categories with the help of the same main program, that is why I am doing the

same thing. 
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So, now,  Nystrom method, in Nystrom method, if you remember what we have learned in the

lecture class. So, we have seen only one category that was Leap Frog or Midpoint and the same

category we are implementing here, if you wanted to see high order methods under this category,

you can again modify these codes and implement yourself. 
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So for that reason, let me also open this m file corresponding to the Nystrom method which we

have made. So again, because in this case, I am implementing just one difference scheme. So that

is why we are not taking argument as a step because we are not working out with different steps.

We are working with just  LeapFrog. That is what that argument is missing here, step which is

intentionally.  
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And now if I see the function name Nystrom which is here. So again, the function prototype is in

front of you and all the meaning of all the arguments seem, except the step which is not here and

the reason also I have explained to you just now.
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So, again, you can see the algorithm which we have implemented is  . So,

again, this is a Two step method, I have to choose some other method to go, go from yi to yi+1.

So, for that reason again because the final order of the method is 2, and the local truncation error

in case of a forward Euler is also 2 that is why in this case also I am choosing forward Euler

which you can observe from here.  y1,  y2 is  predicted by using Euler  method everything is

commented. 

And then  the  final  differences  scheme which  we have  implemented  is  here  which  you can

observe from here and again we are computing the error and then this error is as an output which

we will get in the main function we are basically interested in error, but if some of you wanted to

see how the numerical solution and exact solution look like that also I will explain you later how

you  can  plot  those  exact  solution  and  numerical  solution  basically  both  of  them should  be

consistent.
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So, this is I can press 1 though it is irrelevant corresponds to Nystrom, but why I mentioned

modifying this step is equal to 1 just so, that or at  line should be plotted parallel to the actual

error because the order of the method is 2 that is what we have seen.
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So, again if you want you can also see the error, error is tending to 0 as  if you want it to

observe the rate which should be close to 2 as expected.
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So, now, I am  commenting on this because in this category as I have already said, We have

worked out only one difference scheme. Milne’s Simpsons formula,  so, we can check in the

slides  corresponds  to  Milne’s  Simpsons  formula  what  we  have  done  basically  we  have

implemented for k = 2 we have implemented this differences scheme which I am writing again

here . So, which is nothing but the Simpsons rules.

So, again here that part I have written in the comment that this will correspond to order is equal

to 4.
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So, now, let me open the file Milne Simpsons. So, here also you can see we have implemented

that algorithm here. An Initial Value you can predict with TS 1 TS 2 TS 3, but that you have to

decide which you should choose, so that the global error of the method remains consistent. The

order of the method which we expect from Simpsons is order 4 that is why we have to choose TS

3. If you want the previous one, but then that error will be dominated.
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So, again we can again in this method because we have worked out only with one difference

scheme is step is irrelevant.
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And now, if  I  open Milne’s Simpsons method here also a  step is not taken as an argument

because of the same reason because we have implemented only one difference scheme.

(Refer Slide Time: 49:22)

So, here also if you want I can order 4 so, here basically I should type it 3. So, that  line should

be plotted of course, step is not as an argument in Milne’s Simpsons and as well like Nystrom.
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So, here also you can see, if you want you can separately typed out z very good as this is you can

see how fast  error  is  tending to  0 because this  is  the highest  order  method which we have

implemented so far. Earlier methods were either 1 2 or 3 this is the highest order method which

we have implemented and the result of that highest order is also visible to you error is tending to

0 very fast. So, here also z that also you can observe graphically that error is of course, when

 and the maximum error which we achieve by taking h is roughly order of  which

we can observe from here also and rate should also be close to 4. That is what we have seen the

comment part and here also by typing which is also here.



So, that is the analysis of every defensive scheme under different categories Adam Bashforth,

Adam Moulton's, Nystrom, Milne’s Simpsonn, we have done we have verified numerically the

order of each differences scheme  So, if we have determined the order also we have also seen the

how this differences schemes are converging with respect to one particular example.

(Refer Slide Time: 51:34)

Of course, if you wanted to work out with different examples, you have to change this right hand

side  correspondingly  you  have  to  change  in  the  functions  also  because  in  functions  also,

sometimes to predict TS 1 TS 2, we have also computed the derivative of the right hand side. So,



correspondingly you have to change in all those four routines. Now, if you wanted to see how

this exact solution and numerical solution look like.

(Refer Slide Time: 52:12)

So, in that case, what I will suggest you do is type this command. So, basically I am plotting the

exact solution and let me also plot down the numerical solution here load x into y. 
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So, so now I can run. I will also see the exact numerical solutions, why these different figures are

coming because I am choosing different N. So let us work out for a particular case where I am

achieving the maximum error. So, this is basically 320. And I have chosen only so rate will not

make any sense and your code will stop here.

(Refer Slide Time: 53:30)

Again, some arbitrary thing I am writing so that my code should stop here.



(Refer Slide Time: 53:38)

So of course, this is only one particular h, h, that is why you do not see the line which we were

seeing earlier, because  it corresponds to only one particular h. So, this is figure 1 is the exact

solution and figure 2 is the numerical solution. So, this is just to look at the shape of how this

numerical solution is behaving, both of them are consistent. Anyway, we can observe from this

figure and very fine details if you want to observe the numerical solution and exact solution, so,

for that reason, you have to plot the error also. So, that error also if you want, you can plot it.

(Refer Slide Time: 54:35)



You do not compute the norm of the error instead you plot the error. So instead, here or here

itself in separate figures we can plot the error x into z. 
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So, let me run so that you can see the magnitude of the error which is roughly the same because

the function is quite smooth. So, if you wanted to observe the behavior of the error and with

respect to 01 that also you can check by plotting error, because here we are taking the norm of

the error corresponding to one h.

So, I am closing now. So, in today's lecture, we have seen how to implement explicit schemes,

implicit schemes as well as Two step methods for a Linear Problem. So, thank you very much.


