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Power Method for Solving Eigenvalues of a Matrix

Hello viewers. Welcome back to the course on scientific computing in Matlab. So,

today we will discuss another method that is called how we can find the eigenvalues,

because in the previous lecture we have seen that the eigenvalues play a very

important role in the convergence of the iterative method. So, now the next question is

how we can find the eigenvalue using the numerical computation?
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So, now from the previous one we found that the iterative method like Gauss Jacobi

or Gauss Seidel or other method, they are dependent on the eigenvalues. The rate of

convergence involves spectral radius. So, the question comes: how to find the

eigenvalues of the matrix? So, let us the next topic is how to find the eigenvalues of a

square matrix that is A, that is n cross n because we are involved with solving the

system Ax is equal to b and then we have to find what is the eigenvalue of this n

corrosion system.

We know that the eigenvalues can be found analytically as where

. Then in that case we say that this is an eigenvalue of matrix A and this x is called

corresponding Eigenvector. Now I want to find first what is the eigenvalue and then



the Eigenvector and then we know how we can find this one. Now, if A is 3 cross 3,

then we can find eigenvalues analytically. Analytically means that with the pen or

paper.
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I can find the Cartesian equation and then we can solve this one. Maybe for 4 cross 4

it is quite difficult and then A 5 cross 5 and so on. So, I can say that it is very hard or

even impossible. So, now to find out this one we take the help of numerical

computation. So, to deal with this one, how to find the eigenvalue of the matrix there

is a method called power method. So, the power method is an iterative method. So,

this is an iterative method. So, how can we deal with this one?

Suppose I have a matrix A that is n cross n matrix. Now, what I do because this is

iterative methods, so I start with the initial . So initial means this is my initial

guess. So, that is my initial guess . Now what do I do? I will take . So, I will

get another vector and that other vector I call it maybe .

So, in this case what I do is that, this is a vector. So, now I reduce this vector into

the normalized form, normalized vector. So, whatever the vector I am getting, I

will call it a normalized vector. So, what is the meaning of a normalized vector?

Suppose I have a matrix like 1, 2, -1, 0, suppose this is my matrix and I start with the

process 1 1, then I will get the value, this will multiply and this will add.



So, this is 3 and this will be 1 and this will be -1. So, now in this case this is the

element with the highest magnitude. So, in this case what I will do, I will take 3

common from this. So, this will be 1 and this is -1 by 3. Now the highest value,

highest component in this vector is 1. So, this vector is called a normalized vector.

Does not matter what is the sign because we want the highest in terms of numerical

value or in magnitude value. So, that this vector becomes the normalized vector.

So, what do you do? We make it . So, this , this , what do I do? In the naught

I will take this element common and then I will make this x1 and that I will call it c1.

So, what am I doing here? Now from this vector I have taken this element, the highest

element common. So, I call it c1 now and then the remaining vector becomes x1. So,

x1 is my normalized vector.

So, from here I can say that my . So, that is my normalized vector in

this case. Now from here, what do I do? Now I will take the next step. I will put .

So in this case what will happen? I will put the , from here I will get . Now

with the help of y1 I will reduce this one into c2 x2. So, I will keep doing that. Then

from here I can say that after k steps because after 1 step, I will get .

So, from here I will get in the after 2 step I will get . So, after k step I will

get . So, from here I can write this one, where this is that you have

to keep in mind that this is a normalized vector. This is also a normalized vector.
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So, now from here you can see that I am getting this type of algorithm that is ck xk.

Now, if you just compare with this , now you can see from here that if as

that after many iterations if and are the same, same means they

will take that difference between these L2 norm and that norm is less than the

required tolerance is almost same which implies that the limit k tends to infinity ck

will tends to .

So, this will tend to and then my xk tends to the corresponding Eigenvector. So,

that is the process of the power series method. Now before that one so there is one

more term we want to define that dominant Eigen. So, what is the dominant

eigenvalue? Dominant eigenvalue means suppose I have a matrix, n cross n matrix

and now from the linear algebra we know that if we have a n cross n matrix, then we

have a n number of eigenvalues.

So, suppose I write ​᠎​, this is the n eigenvalues corresponding to this

matrix. These eigenvalues may be complex and also do not matter. Now, if we choose

, any ith value taking the magnitude, that is maximum maximum among all

, I can call it k among all i’s then this is called the dominant eigenvalue. So, we call it

in terms of magnitude maximum all lambda i’s in terms of magnitude.



Then the eigenvector that is xk corresponding to ​᠎​is called the dominant

Eigenvector. So, that is called the dominant Eigenvector. So, now we are ready to

apply that power method. So, this is the power method we are going to define now.

(Refer Slide Time: 12:32)

Power method, so assuming that the matrix A that is n cross n matrix having n distinct

eigenvalues. So, that is the condition. We are dealing with n distinct eigenvalues

because we know that the eigenvalue may be repeating also. So, that we are not

keeping in mind we are having the n distinct eigenvalues. Now we know that if we

have n distinct eigenvalues then which implies that we have n linearly independent

Eigenvectors.

So, we have now . These are n distinct eigenvalues and I take it v1,

v2, vn or we can take this as x1, x2, xn. So, these are n linearly independent. So, this

is LI. I can write it as LI Eigenvectors. So, these are there. Now, I know that this is the

linearly independent Eigenvector. So, let us choose without loss of generality that

is the highest one.

So, I can call it ​᠎​ because they are n distinct eigenvalues.

So, we could call it. Now if, is chosen appropriately, then the sequence xk, so this

is I am writing in terms of a vector because this will be a vector definitely. So, this



is where k is 0 1 2 and so on and ck generated recursively as ​᠎​
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Which implies my where where the . Suppose I

take that . I already told you that it should be the maximum value

and that maximum I will take k common that is my ck as we have discussed here. So,

this is basically my ck and that is the maximum value.

Then the sequence will converge to the dominant eigenvalue that is and eigen

vector that is x1 respectively. So, that is the and .

So, this is my statement. I have already explained for a given problem how we can

implement this power method. So, that is the statement.
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Now we can do the proof of this one. So, proof is quite easy. Now given that x1, x2

up to xn are linearly independent vectors. Now from here I can say that if I choose

any vector that can be written as a linear combination so

. So, I can write these as a linear combination

because these are the n vectors linearly in one vector.

So, any vector which is dimension n can be written as a linear combination of this

one. So, that is my equation number 1. So, where is initial guess. So, that is the

initial guess we are going to start with. Now I apply the matrix. So, pre-multiply

equation 1 with the a matrix and the corrosion matrix whatever the matrix I am taken.

So,

Now the x1 is the eigenvector corresponding to the eigenvalue . So, from here I can

write that this should be equal to . So, this one

we can write from here. So, from here I can write this one as now this is my ax2. Now

from here I know that this .

Now I know that in the y0 I will take the factor ck common. So, what can I write from

here? This one I can write as (Refer

Slide Time: 21:47)



From here this I know that becomes x1 because we already know that this becomes x

1. So, from here I can write that x1 can be written as now I can write this as so from

what I am doing now, I will just take the common over c1 from all. Now I will get

from inside I will get . I will get this value and so on in the end

I will get .

So, this one I so c1 I just take common and I will take also common from all this.

Now I will get from here, so this is again I can apply for this one. Now I will again so

I can write it as a 2. Now again apply multiply so again multiply pre multiply with

respect to A. So, I will get

Now from here I know that this is again the . This is . This is . This is

. This is . So from here I can write this as



Now again I can take this lambda 1 common and from here I can get a x1 will be

what? That would be y1 and y1 I take the common factor. So, this will be equal to c2

x2. So, now from here I can write that my x2 will be and again I am taking the

common square and it will be c1c2 because this factor is I have taken this as a

common.

This is the highest value we are taking to make this vector as a normalized vector and

from here I can write this as a again

and so on. So, if we keep doing after k iterations, so the first iteration I will get x1, in

the second iteration I will get x2. So after k iteration I will get x k.

So, it will be

. So, this

is what we are finding.
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Now from here now if then let us see what will happen. Then in this case

you know that so all these factors if you see then this factor if you see , if you

see this is very less than 1 in magnitude. So, I can take the value of this one.

Similarly, . From here I can see that now if I chose , this is the

condition we have taken that in magnitude it is value is 1. It may happen. So, let us

see what will happen. Suppose I take and is suppose 4 and is

suppose -2. Then what will happen?

So, in magnitude this is the highest value. So, I will take over . So, it is 4 over

-8. This is -1 by 2. Now lambda 3 by , so it is -2 by -8, so it is 1 by 4. So, that is a

value less than 1. This is also less than 1 in magnitude. So, this value is in magnitude

less than 1 and this value is in magnitude less than 1.

Now what will happen if I ? So, in this case this will be and then

. Now if I then I know that this is going to be 0. So, from here I can

say that this factor in magnitude is also going to be 0. So, if I put this k tends to

infinity from here I can say that limit k tends to infinity xk and then I put the limit

again. I take the limit on both sides. So, this will be

and now we also assumed that these matrices are distinct. These eigenvalues are

distinct and real also but if it is not real then we have to take the magnitude. So, in

that case we can take the magnitude of this one when the eigenvalues are complex.



Now if you see from here then I can write from here that the and on the

right hand side this tends to 0. All these terms tend to 0. So from here I will get this

will be equal to

Now from here also I know that on the left hand side it is also converging to x1

because we know that whenever we will get only then the method will

converge. So, this is the same eigenvector. So, from here I can say that this implies

that as k tends to infinity, this factor should converge to

x1.

So, that implies that . Now from here this is my

condition. Now the same I can write from here,

because I am just in place of k I am putting k-1. So, that is it.
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Now I will get 2. So, I call it 3. I call it 4. So, dividing 3 by 4 will get the limit k tends

to infinity. So, I will get . So, this will

cancel out with this and this will cancel out with this.

So, from here I will get the and from here I can say that the

. So, that is my convergence of this one. So, if my vector is

converging to x1, then that x1 is the dominant eigenvector then the eigenvalue ck will

converge to the .

So, that is the proof of this power series theorem. So, let us stop today here. So, today

we have started with the power series method. Then to find the dominant eigenvalues

and the dominant eigenvector. So, I hope you have enjoyed this lecture. Will continue

from the next lecture. So, thanks for watching this. Thanks very much.


