Scientific Computing Using MATLAB
Professor Vivek Aggarwal & Professor Mani Mehra
Department of Mathematics
Indian Institute of Technology, Delhi & Delhi Technological University, Delhi
Module 04
Lecture 17
MATLAB Code for Newton Method for Solving System of Equations

Hello viewers, welcome back to lecture number 17. So, today we are going to discuss lecture
17. So, in the previous lecture, we discussed how we can apply the Newton-Raphson method
for solving a system of equations. So, today we will do the example based on that one and

then we will do the MATLAB coding.

(Refer Slide Time: 00:44)

"l Scientific Computing using Matters (Lec 17) - Windows Journal = la “.
file Edit View Insert Actors Tools Help
1’ B/MENEEEEN [v MR- 9 SEr-

Lu‘w: -7

Neuﬁn MM ‘E"’ S

)
) = b= ns
C"'L/ H"/"; ‘2{_" \ o
glep) =
2= 2432
}L’“)’D = 2 Hetdl 45 X YmE
) PO
[//' = 2.7,3,?.,552.
‘ 2 j9) + S
e ;(_x-u:)-r
¢ Fleeis) = (2 o

er -
g . . e
LN PR N)‘3(@,)4.3?'(&)4,3"@)
» aF = 2 —245 S
1,187ty s H e 38 =
T M

1036AM
16-Mar-20

So, let us do one example here using the Newton method for the system. So, we are talking

about here the 2-dimensional system like suppose I have f(x, y).

fx,y)=x"+y"—y-5
gx,y) = y—e ™ -1

I want to find the roots of this equation. So, this is the case 1 I can take. So, this we will solve

using the MATLAB code.

Now, I take the case 2, that how we can find the complex root. So, suppose I have a function
in z, F(z)= 0 where z is a complex number x + iy. So, in this case, let us take the example that

So, suppose z naught is equal to x naught plus iy naught is the root; is a root of this equation.

F(z)=2'-3z+4+52 =0

So, you know that this is in the complex form and in fact it is an analytic function. So, I can

split this function as a function of x + iy. So, this z is there so I should write this as the capital

F. So, it is capital F.
F(z)=((x+iyy’ =3(x+iy)+52
= (x3 —3x)? = 3x+52) +i (3x2y— ¥ - 3y)

I can collect the real terms and the imaginary terms.

(Refer Slide Time: 04:29)

'] cientific Computing using Matters (Lec 17) - Windows Joural - FIEd)
file Edit View Insert Actions Tooks Help
2’5/ MEEEEEEE N0 " N ERZ-9-S4F-
2 xtid
e 07 Jo et 2N
/@, figs 23845
N e
5 249 52
T el ant 2872
» - = _ <
x? > -b,ﬂf—rh y 3 -3 b ge-3bHEE
- x

F!"’) = LJ_'J’% 'Jl'.-r;") '“(-3‘5 g ‘Jj)

oy =0
arh 3l

=
—kﬂ

Qi g0 o k. skioh Code.

f(x,y)= (;x:3 —3xy> = 3x + 52)
gx,y) = (3x*y—y -3y

So that will be the real part and the imaginary part. So, from here I can write my F(z) is equal
to this.

So, then we can say, so whatever the value of x and y I am getting from here, I can write that

z is equal to that x, + 1y, 1s a root of equation number, I can take this equation number 1. So,

by this way, we can find the root of the equation. So, let us go to the MATLAB code. Let us
MATLAB code. So today, let us start with the MATLAB code.

(Refer Slide Time: 07:51)

J Fing Invent | ‘il - o = -
g3 | [e @ BEU - Y | [2 B (oo @
(0] o e g commtdol i

[P ——— T e S

T e v i AP v ndent] Gy - + Advance
| e NAVICATL O | SREAKFOINTS
T G function b

>

§

.

s

B

s

H

9- “A7.0f, y=A7.61 \n',x(1),x(2));| 1
»

] o 3 aslta

2

1

u i

SR | Gresera s

16 - | TRRINtT(® At 1tr=Ad, x=\7.61, y=37.6f \n', 1tr, x(1),x(2))

7 end

»

»

Run and
Time

Em A m "

TheslsReport.pdf NUMTAZ019 LNCS ma15d080_theals. DTU MarksRGrade Macintosh HD
pdf)

17 Ovenvar

VARANE
/> Users » manl » Dosktop » NPTEL M:

C.Phillips (auth.)-Numerical Method. .

[Newvaron

fable ~

atlab_Codo

So, today I have already made the code for you because now we are familiar with how to
write a code. So, let us start with the code I have made. So, this is the code we have I have

started with. So that is the function value. So, this is the function and it gives you the x and

& Analyaa Coda
£y Run and Time

save
Workspace |/ ClearWorkspace = Clar Cammands
cont

MATLAB R20155

= Praferances
PR NC -
:
Add-Oms Halp st Support
o g
G

Simuink Layout

RESOURCES

iteration. Now, I keep the name Newton_system.

So, this capital F is the function that is whatever we are going to define. J is the Jacobian that

we already know how to because in this case I have to find the Jacobian also.

Where x=[x(1) x (2)] and this is the tolerance we are given.

So, this program solves nonlinear system F=0 by Newton method. J is Jacobian; Jacobian we

know that it is a partial derivative with respect to the variable x and y. So, that is the Jacobian.

So, this is my x=[x(1) x (2)]. And that x =X, is the starting value, the initial value what we

are going to start with.

So, now from here I write that F (x). So, whatever the function I am getting I put the value of
x and I get the value of fy, F_value. Then, in this case because it is a vector valued function,
so we have to find the norm of that one; instead of absolute value, we are finding the norm.

So, 12 norm if we take, so this will be the 12 norm. So, that will be the norm.
function [x, itr] = Newton_system(F, J, x, tol)

% This prog. solves nonlinear system F=0 by Newton?s method.

% J is the Jacobian of F. Both F and J must be functions of x=(x(1),x(2)).
% At input, x=x0 holds the start value. The iteration continues

% until norm(F) < tol.

F value = F(x);

F norm =norm(F_value); % 12 norm of vector

itr = 0;

fprintf('initial approximation is x=%7.6f, y=%7.6f \n',x(1),x(2));

while F_norm > tol && itr < 100

delta = J(x)\(-F_value); % Solving the system J delta =- Fvalue

X = x + delta;

F value = F(x);

F norm =norm(F_value);

itr =1itr + 1;

fprintf(" At itr=%d, x=%7.6f, y=%7.6f \n', itr, x(1),x(2));

end

% Here, either a solution is found, or too many iterations

if F_norm > tol

itr =-1;
end

end

Now, I will put the value of delta in the initial approximation and my approximation x will be
improved and then I will find the value of F because this is a function we are passing. So,
whatever the new x I am getting here, I will get the value of the function here. So, that is the

F value and the same one it is the norm of that function.

Now, I will find the iteration, increase the iteration by 1 and then I will be making the print of
that one that what is the root of this finding the root at each iteration. So, this will be written
here and then it will do the end of this while loop. And now, if it is here that here either a

solution is found or too many iterations.

So, if F_norm is greater than tolerance, iteration will be minus 1 and then this is the end of
the function. So, this function I have started with the name Newton system. So, this name
and the file name will be the same. So, this is my function we are calling. Now I have to write

the main program. So, the main program is written like this.

(Refer Slide Time: 13:21)

£ Lo W Lmnsenon 03

Brealpoints Run Runand |- Advance Runand
- - Adwnce Time

mpare 23
S e g Fnd e g
e

MAVICATE o scaxronTs o

function test Newton_system()

tor = F(x)
1)23-30x (1) #x(2)22=39x(1)#52; . ..
~24x(2)-x(2)*3-3ax(2)); Becareful about

atrix = 3(x)
[30x(1) A2=3wx (2)"2=3 =6wx(1)#x(2);. ..
ex(1)9x(2) Iex(1)°2-39x(2)"2-3);

test_Newton_system ln 6 Col 4

I e

So here because we are dealing with the system of equations, so I am writing this function in
the form of a function value. So, I am writing: function test Newton system and no
argument. It means it is, it will work as a script file. So, in this case, I will start with the name
of this function that it test Newton system. So, I will start with the clc whatever is written
there. Then, I will give the expected value; expected root. So, whatever the root I am going to
expect, so I will write here then I will pass the tolerance. And then this is the function I am

calling from here the Newton_ system what just we have defined.

function test Newton system()

clc

%expected = [2.22; 1.11]; % test Case-1
expected = [2; 3]; % test Case-2

tol = le-4;

[x, n] = Newton system(@F, @J, [1; .5], tol);

$x=[2; 1]
error = norm(expected - x);

fprintf ('L 2 error is =%g \n', error);

end

$Test Case-1

o°

function F vector = F(x)

o

F vector = [x(1)"2+x(2)"2-x(2)-5;...

o

x(2)-exp(-x(1))-1]; % Be careful about spacing on writing F vector

o°

end

o©°

function J matrix = J(x)

o

J matrix = [2*x(1) 2*x(2)-1;...

o°

exp(-x (1)) 1];

o©°

end

o

Test Case-2

function F vector = F(x)

F vector = [x(1)"3-3*x(1)*x(2)"2-3*x(1)+52;...

3*x (1) "2*x (2)-x(2)"3-3*x(2)1; $Be Careful about spacing on writing
F vector

end

function J matrix = J(x)

J matrix = [3*x(1)"2-3*x(2)"2-3 -6*x(1)*x(2);...

6*x (1) *x(2) 3*x(1l)"2-3*x(2)"2-31;

end

So, this is a function passing at the rate (@). So the unanimous function I am passing. So, this
is the F, that is the Jacobian. This is the initial approximation that was the x here, and that is
the tolerance we are passing. And then the error, I am finding the norm. So, norm is 12 norm.
Expected value, whatever the root is there, minus whatever the approximation we are getting.
So, I am finding that error and here I am printing the error. So, this is a function we are

finding here.

(Refer Slide Time: 15:24)

or = F(x)
13 1224x(2)42-x(2) 55 . .
14 115\ Becareful about

=
{¥
R

NPTEL

test_Newton_system tn 4 Col 2

So now, I will start with my case 1 and case 2. So, let us start with so I will just be starting
with the case 1. So, this is I am going to start with. Now my expected value will be 2.22 and
1.11 for the test case 1; so, whatever the test case 1 I have taken, okay. So, in this case, [am

starting with the initial 1, 1 and tolerance I am taking 10 .

Now I will start with the function. So, my function was x* + y*- y - 5. So, I am finding writing

a function that is a vector value.
function F vector = F(x)
F vector = [x(1)"2+x(2)"2-x(2)-5;...
x(2)-exp(-x(1))-11;
end

And the second value is, here I am writing the semicolon means I am writing a column vector
and these 3 dots are that if the vector is, if the value of the function is very large then
sometime, we have to write the value in the next in the line. So, to further continue the line

we put the 3 dots. So, it means that the next line will be the continuation of this one.

So, this is my first function and the second function g (x, y) was y- e*-1. So that is the
function value we have defined. So, we have defined a column vector with the F (x, y) here
and g (X, y) here. Now, this is the first function we have defined. Now I have defined the
Jacobian. So, the] matrix I am defining. So, from here I am taking the value of x. So, J (x)
will be defined here. So, the J matrix is equal to J (x). So, J matrix will be what? I am taking

the partial derivative of this function.

function J_matrix = J(x)
J_matrix = [2*x(1) 2*x(2)-1;...
exp(-x(1)) 1];

(Refer Slide Time: 17:31)

E Scentiic Computing using Matters Lec 17 - Windons Journal - SIEH)
File Edit View Insert Actiors Tools Help)
A7 B/ AMAEEEEN N R L3 O’ HE7-9-S4 -
Lchu: -7
Neuﬁ" Meped ,?.rr Qypnn Tl = [:f. g:} ~ /';a ae-T)
e 35 [T =% (|
= [<
Ly g5 P
C‘”‘@ }("/'3); e 2= 2c 4= o) ps
clii iy e [
glaz) = ¥ 5e= &7 %3 | s
P xtid ¢
s 23 ey 7%
s y ok 220 Zoetite 45 X W) =3,
(}”‘ F(L)— 2_7‘3%*51_
i - g ;
¢ i) = (x43) - 3(xts) £ 52 ‘
e e ,‘Q';)L,Jag—nu TEL
[;‘;,z\ - ,_54,@:)“& (&)« 3 A
x'r} 6 2+ ;’x’*u": e S o
—
e 2
o 1) = (e rmsanese) ei(385--2)
* 12

1053AM

16-Mar-20

So, x square so let us say from here. So, I am taking the Jacobian now. So, Jacobian basically

1s this one.

s[5 5
| 8x 8y

;- [2x 2y-—1
e 1

So this is the Jacobian.

I am going to pass for this function. So, this is my J (x) and F_vector I have defined like this
one: f (x, y) and g (X, y) and this x in the code I have defined is a vector. So, x (1) and x (2).
So, basically this is my x and this is my y because in the MATLAB code, we have to define
the multivalued vector in this form or multivalued variable in this form: x and y (in the vector

form). So, that is what we are going to define.

(Refer Slide Time: 19:16)

file Edit View Insert Actions Tools Help

05/ MENEEEEE BCE 0 O HEZ-9-54¢-

> o £r2) 43% L4?J)—rJ = ,
b SPPRCR RIS
FE = ’uuﬂ‘s,-sth e
Flv) —L—H-j -Jusl-)u@"l” -5 ”-)
S —

= xb)-uo ED
F{"J ‘H () - fr ol ‘f@
Mg =]ﬂ —
ar 5l =
Lo g0 et Makleh e
Fbs) sk
LR R . (”;>)> Hog)

Jbw)= o

ixy w353

The same way for this function. Now, I will define my F (z).

f(x,y)= (x3 —3xy* = 3x + 52)
g, y)= (3x°y—-y =3y) 4

3x> =3y -3 —6xy

J(x) =
(x) 6xy 3x2 —=3y> =3

(Refer Slide Time: 20:35)

ThaslsRaport.pdf NUMTA2010 LNCS ma15d080 thesls. DTU Marks&Grada Macintosh HD
/Users/mani/Desktop/NPTEL_Matlab_Cedotost_Newlon_system.m

< g g b

i

g | mmBEG L B[B o s (2

g: oo~ c-n--mggx_i | Braigo | Rin Mnand |-y Admnce Rinang

1
2-
3
a- d
5- | tol = 1e-4;
6 Ix) \ n] Mmun _systen(gF, @3, [1; 11, tol); 1
7 e
8 EREE uuvm(uueuw X3
9- | fprintf('L 2 arror 15 =Ag \n', arror);
10 Lend
n % Tost
12
13 (1~ «m 2 X(2)-5
14 % x(2)-amext2)) n ¥ becareut sbout spacing on wrtiting F_vector
15
16 N function 3 natrix = 2(x)
17 x(1) 29%(2)-1;
18
19
» 2
2 function F_vector = F(x)
2 Fovector = [x(1)"3-3wx(1)#x(2)"2-39x(1)+52;. ..
23 (a2 23 2igakamm 2] SN becaretulisbouct shmcingioni et clap] Fovectos
2
» e nman 3 _matrix = 3(x)
26 |) matrix = [3ex(1)~2-3ex(2)~2-3 ~6wx(1)wx(2);
7 Goxi u)c.m Fex(1)~2-30x(2)~2-3];
2 -

NPTEL

test_Newton_system tn 6 Col 4

So, this is the way we have defined. So, let us write my J (x) here. So, now my J (x) is
defined. So, as in the previous one, we defined the J (x). So, J (x) was, so it was 2x then 2y-1
e™ and 1. So, that is my Jacobian. So, now from here I will get the value of x. From here, |
will pass the value of F_vector. So, F_vector is equal to f(x) and J matrix is equal to g(x).
And these vectors, these values of the vectors will be passed to this function. So, at the rate

(@) F and at the rate (@) means this is a function value. Now, let us run this one.

(Refer Slide Time: 21:28)

Em Em ™

TheslsReport.pdf NUMTA2019 LNCS me15d0B0 thesls. DTU MarksRGrade Macintosh HD
par ®

jUsors/mani/Desktop/NPTEL Matlab_Codojtost Nowton.syatom -

n H [Jrindries <4 Invers 20 f [v x| L_ (F=l u
ae J - m < % L hunSection (L
(L] ecpuraiietlcnd 60 il Commentiit 73
New Gpor Swe i Breakpoints Ran Runand || Advance Runng
e O e e K Y Ll
- e - e -

1L function test_Newton_systen()

il

- f2.22; 1.11);

a = 121 307 tast

5= 0

6 Ix, nl n_system(8F, @1, [1; 1], tol);

7 x=[2; 1)

8 error = norm(expected - x);

= fprintf('L 2 arror is =Ag \n', error);

Leat_Newton_system n 1L Col 2
ThoslsRapOrt.Edf NUMTAZ010. LNCS me15d080. thesls. DTU MarksaGrada Macintosh HO
pt "
MATLAB R2015b
ErToR Howe G (e @l (2 z
] g n N Varlable Anayzu Co g
22 KL 68 O (grame | & [e i &y A C IO —
New 006 St New New Open L Comary I San PSR e L Simuink Layour Ad4-Oms HAIp % Requesd Support
" sl - Data Workspac |/ ClearWarkipace ~ | Char Commands + Ubriry -
D — anans ook swae ko I R

4] /> Ussrs » mani » Dasktap » NPTEL Marlab Code
o
7
= C.Phillips (auth.)-Numerical Method...
6
7
8
o- k2, 20063
10 - 12 arror is =.0113678
n I~
12
f2) 0o G mataksymmn
14
15
16
Y
0
19 -
n
n
»
5
24
m
2
” E
8 d
\
NPTEL
Deta =

So, let us so there is some end term. So, this is we have to write function end, function end
and then function end. This is the test case so we have to write like this one. Now, find the
value of the function. So, this is so I started with 1, 1 and after 5 iterations, that is my

solution. So, it is 2.20 and 1.10. And my error, 12 error is giving is finding here 0.011. So, this

is the value we are getting because here the expected value is also not known. It is just the
approximation value of the roots. So, that is why whatever the value we are getting is the

value corresponding to, the error corresponding to this expected value.

(Refer Slide Time: 22:33)

Em Em ™

ThaslsReport.pdf NUMTA2019 LNCS ma15d080 theals. DTU MarksRGrida Macintosh HD
par »

MATLAB R2016b

SCH Q scarch Docur

Ftaance)

Add-Oms

LANE [Find Files Y

Now New Opn L Comaara

@
3

- S , nwan

1 Tenel g 51 B3 6/ » Uters » manl » Desktop » NPTEL Matlab Codo

37| expec Current Folder o & ‘Warkspa(m
B ame s n roximation 1. .

A () C. Woodford, C. Phillips Gauth.)-Numarical Mathod... ‘;‘}".;"",':,fn;:‘;,,‘;_‘_‘,,:Z:"' bt i |

H bisectionm At itra2, x-2.208700, y-1.100831

7 ~ flgural.aps. AU LUr=3, x=2,208638, y=1,10985¢

Y #) figure fig L2 error 15 =0.011362
& i

e) firstm o=

10-] fixedpt.m i

- el ® wainin

. T matiat.pdf

5 7 matabsym mn

i Bmatatomaor

1 Mugad_tutarial,pdf

g 2} Nowton.m

e Newton_system.m

H Newton_system.m-

T regulam

= SGNFLM_S001_5001_TO17.mp4

i] testlm

2 w Fy) test_Newton_system.m

35 i X test Newton systemm-

2 g TE tutorialS pdf

i’ At

% wom

7o

® vend

Em A m ™

ThasisReport.pdf NUMTAZ019 LNCS ma15d080_thasls. DTU_MarksiCrada Macintosh HD
pdf "

[Uzers/mani/Dezktop/NPTEL Matlab_CodeitestNowton_syatem m®

PUSLISH

€ i3 e e | S G R e &

New pan, sava S ComPe = GgiGato v | Comment % g Breakpoints Ran Runand || Advance Runand
1 function Lest_Newton_systen()

2 1e

3- | expected = [2.225 1.11)5 % test Cose-1

4 wexpectad = (2; 315 % test Case-2

5. tol=ledy

6 Ix, nl = Newton_systen(eF, 3, 12; 11, tol);

7 we(2; 1)

B error = norm(expected = x);

9= | fprintf(*L 2 error is =Ag \n', arror);

10 -

n ATest Case-1

12 function F_vector = F(x)

13 Fvector = [x(1)24x(2)*2-x(2) =53+ ..

14 x(2)-exp(-x(1))-11; \ Becareful about spacing on wrtiting F_vector
15

16 function 2 matrix = J(x)

17 Jmatrix = [26x(1) 2#x(2)-1;

18 exp(-x(1)) 1];

19-

»

n on F_vector = F(x)

2 [x(1)~3=3x (1) #x(2) ~2=39x (1) 452

2 v 3ex(1)~24x(2)-x(2)"3-3sx(2)]; \ Becareful about spacing on wrtiting F_vector
24 % end

5 % function 1 matrix = 3(x)

2 %o J_matrix = [3ex(1)*2-3ex(2)°2-3 ~bwx(1)ax(2) 500

7 W Bex(1)ex(2) 3ex(1)22-3wx(2)°2-30;

2 % end

NPTEL

Lest_Newton_system n 6 Col 34

= Fm ™

ThasisReport.pdf NUMTA2019 LNCS ma15d080_thaals. DTU_MarksiCrada Macintosh HD
pdf "

0 MATLAB R20155

.
el
r |, New Varlabke Analyze Code. a8 Prafarancas
+w + (e & [W el 'M‘" - (Cs=} ,@km D | @ ¢y commny
New 0881 S| New New Opun () Comwn Impore a0 YVeRbe LTI Simuitel Lamauss (5 A0 Wl < Request Support
ol b Saipt v - Data Workspace. Q:mvmnm - Eﬁmﬂdwll o Library - ﬂmv - E—
o anang — cons T —T B — e [FE——

i LG & 1§ 10/ > Users » manl » Dosktop » NPTEL Matlab_Code
fo ® Worksp
A B N+ [
c- =2 2](Woodford, C.Phillips (auth.) Numerical Methed...
6) bisectionm
7
1
ol
10-
n 1, y=2.723483
12 » ye2.728414 1
13
14
15
16
v
it
-) regulam
0 Tas & SGNFLM_S001_S001_TO17.mp4
1 pall
2 d
i ctom.m-
24
25
I 3
7 W
8 d

iy*i

I

NPTEL

Details ~

Em Em ™

TheslsReport.pdf NUMTA2010 LNCS me15d080 theals. DTU MarksRGrade Macintosh HD
par ®

e B L mnseon
wan Boand | adana Runang
s e

e T i

sten(@F, 81, 10 1], tol);
1)
error = normlexpected - x);
L2 arror 15 -Ag \n'

fprintr(t arror);

1
_vector = F(x)
[x(1)224x(2)*2-x(2) -5 .«
bout

1| x(2-exp(-x(1)-1) pacing titing F_vect
15 end

16 function J_matrix - 3(x)

17| dmatrix = [2ex(1) 2ex(2)-3;...

1B exp(-x(1) 1)

19- |end

»

test_Newton_system Ln 6 Col 34

Now, we can even change the initial condition and then let us run this one. So, in this case,
you can see that even with the three iterations we are getting the solution and the error is this
one. So based on that, whatever the value you are going to take, let us see with the 0, 1. So,

see, in this case, we have to take 8 iterations and the results are giving you the different roots.

So, it is giving the x is equal to this value and y is equal to this value. So, in this case, my root
is not getting the same one because you have to tell in the initial that around which you are
going to find the root. So, in this case, I am going to find the root near to 2.22 and 1.11. So

that is why I have to start with this value.

(Refer Slide Time: 23:28)

E = Em ™

ThaslsReport.pdf NUMTA2019 LNCS ma15d080_thasls. DTU MarksRGrada Macintosh HD
pdf "

[Uzers/mani/Dezktop/NPTEL Matiab_Codoltest Nowton.zyatem m™

oo
L I : T T = P
A N O o I . 1 [P B2
i s oot ot . el s s i
D =T h Find v e g - ~ Adwnce Time
o

1 function test Newton_system()

- [ae

3- expected = [2.22; 1.11]; % test Cose-l

. wexpected = [2; 3]; % test Case-2

5o |t = daey

67 | e, 0l = Newton_systen(ar, @, (1.5 11, toU;

R ot

8 error = norm(expected = x);

°- fprintf(‘L_2 arror is =Ag \n‘, arror);
55 lea
. ATest Case-t
12 function F_vector = F(x)
13 F_vec [x(1)"24x(2)*2-x(2) 554 00
14 x(2)-exp(-x(1))-11; Becareful about spacing on wrtiting F_vector
15 end
16 function) matrix = J(x)
v J_matrix = [2ex(1) 2#x(2)=1;...
18 exp(=x(1)) 1];
-
7a ;
n
» (1r3-30x (1) ox(2)2-3wx(1)952;
n }~3-3ex(2)1; \ Becareful about spacing on wrtiting F_vector
24
;-, 1.matrix = 300}
zn Sox(1) 22730 (2)72-3 bk (1) ax(2) . .
” 20 Ben 11773k (212231
2

A\
NPTEL
Lest_Newton_system n 6 Col 36

EOITOR HOME

R e O O (I 2 e
New Opon S| New New Gpun (U Compare lnpors S [L2OPEN VIV jhbaucnoy
= - Da Workspaca |/, Clear Warksy . Cloar Commands.

& Analyze Coda

an Prafarances

& | O3 |‘@s«pun @ @y

P

| me

funEt o (1§ 9/ » Users » manl » Dosktop » NPTEL Mar
Current folder o B
Han

W Workspace
Nama &

imation 15 x=0.000000, y=1.000000
4.000000, y=6.000000
3.03

tol's JH0 C Woodford, C. Phllps Guth)-Numerical Mathod...
) bisectios 2.973709

12 flgureleps

2.088849, y=2.097464

error & figureLfig

g) irstm 1.289620, 21344
9 torin & 0. /64700 25211
10- lena | Gfixedotm 0.569084, y~2,728007
o srest Smainim At Ltre7, x=-0.345771, y=2.125463
12 G funcy T2 matiab.pdf AU Ltr=8, x=-0.545467, y=2.725414 }
13 Fvee U ::::';:u:::’ L2 error 1z =3.20271
el |2l neibemed |
16 Gfunch & Newtonm
17 ymat) Newton_systemm
18 oxpls © Newton_system.m-
19 end | Elregulam
» % Teq & SGNFLM_S001.5001_TO17.mpé
2n o run %) testlm
2 wry) test_Newton_system.m
23 \ 3m - test Newton system.m-
2 woung TH tutorialS pdf
s o fuy
% %
7w
W vend

Or maybe I can start with 1.5. And then let us see what will happen? Now we are adding
convergence to this root. So, it is based on which roots you want because it may have more
than one root and you do not know which roots you are going to find. So, in this case, [am
going to find the root here. So, I take this initial condition and based on this initial condition I
am my route is converging to 2.20 and 1.10. So, this is what we expected. So that is the way

we can solve the test case 1.

(Refer Slide Time: 24:08)

E = E =™

TheslsReport.pdf NUMTA2019 LNCS ma15d080 thasls. DTU MarksRGrada Macintosh HD
par ®

/Usors/mani/DeskiopiNPTEL Matlab. Codo/test. Newion_syatom.m

s — NAVIGATE
function test_Newton_systen()
e

1
2

3 expected = [2.22; 1.11]; % Lest Cosel
a mexpected = (2; 31; % test Case-2

5. | tol = 1e-a;
6

7

[l

[x, nl = Newton_systen(aF, @1, [1.5; 11, tol);
wel2; 1]
error = normlexpected - x);
9- | fprintf('L 2 arror iz -Ag \n', arror);
end

10 -
n ATost Caso-1

12 function F_vector = F(x)

13 F_vector = [X(1)~24x(2)"2-x(2)-5;. ..

14 *(2)-exp(-x(1))-1]; \ Becareful about spacing on wrtiting F_vector
15

en
16 function 3 matrix = 3(x)
17 Jmatrix = [2ex(1) Zec(2)=1i.0s

1B exp(ex(1)) 113
19- lend

@ % Test Case-

2 % function r_vector =

2w Fvector = [x(1)*3=3x (1)ex(2)~2=3ex(1)+52;

23 A 3ex(1)%2ex(2)-x(2)*3-3m(2)]; \ Becareful about spacing on wrtiting F_vector
U wend

2 A function 3 matrix = 3(x)

6 % _matrix = [3ex(1)~2-dex(2)°2-3 =bex(L)ex(2) . ..

77 n Gex(Dex(2) Iex(1)~2-39x(2)°2-31

B v end

test_Newton_system Ln 20 Col L

ThaslsRaport.pdf NUMTA2010 LNCS ma15d0BO_thasls. DTU_MarksiGrada Macintosh HD

jUsersjmani/Dosktop/NPTEL Matlab_Codoltost. Newton_system m
PuaLISH
(rndries <o T
L Compare =
.

il function Lest_Newton_system()

2-

3- Sexpected 12.22; 1.1115 % test Case-1

A expacted = [2; 3); % test Case-2

- tol = le-4;

6 [x, 0l = Newton_system(gF, @3, (1 11, tol);

7 w=l2; 1)

8 error = norm(expected - %)

9- | fprintf(*L 2 orror 1z =g \n’, arror);

- end

1 Test Case-l

12 % function F_vector = F(x)

13 % F_vector = [x(1)*24x(2)*2=x(2)=5;...

14 v x(2)-exp(-x(1))-1]; % Becareful about spacing on wrtiting F_vector
15 % end

16 A function 3 matrix = (x)

17 % dmetrix = [2ex(1) 2(2)-T...

18 & axp(-x(1)) 1);

19 % end

0 % Test Case-2

2 function F_vector = F(x)

2 Fovector = [x(1)73=3wx(1)#x(2)"2-3x(1)+52;. ..
3 3ex(1)~2ex(2)-x(2)~3-3#x(2)]; * Becareful about spacing on wrtiting F_vector
- end

5 function) _matrix = J(x)

26 - J_matrix = [3ex(1)*2=3ax(2)*2=3 =bwx(1)wx(2);...
7 Gox(1)wx(2) 3Jex(1)22-3ex(2)*2-3) ;

8- end

n 6 Col 34

Em B =™

ThasisRaport.pdf NUMTA2010 LNCS ma15d080,_thaals. DTU_Marks&Grada Macintosh HD
pdf "

e MATLAB R20156

EdITOR

o Jj Ll 82 O Gmara ey (7, Mtess " g | (O @ B G gy commany

R 3
New Oper Si pew New Open | Comoare Import £ Qeen varehie ALCILLS simuink Layour 1547
> el brary v [l Paratal

Save Ad4-Om Help % Request Support
Saipt D Workspace | ClearWarkspace = /3 Claar Commands. = L - - el
e e oo Swamc | wweowewt | wowos

funct o,
e

1
2

3 expe
4= expac B
5- |tol=

6 0 =
7 < 2
8 ror

erro
- | tprin

Now I will do the test case 2. So, I will comment on this one, and we will start with this. So,
let us do the test case 2. So, in this case, I will change my expected value. So, in this case, the
complex functions whatever we have defined, so this is the function we have defined: The

F_vector is x*-3xy*-3x+52. So, that was my f (x, y) and the second was 3x*y-y’-3y.

So, that was my g (x,y); the other function. And the Jacobian we have defined.

Iy

J(x,y) = ’fx
Ex 8y

So, Jacobian we are getting and I am expecting this value as 2 and 3 as a root of this. So, we

will start with this same initial condition, and I run this one and let us see.

So, based on this one initial approximation (1, 1) after the seventh iteration, we are getting
my root 2, 3. And because in this case, we already know the exact value of the root that is 2
and 3. So you can see that 12 error is very small; 10> . So, in this case, my root is almost
after 7 iteration, our root is very close to the exact value. It is converging very fast. So maybe

I can take some other condition.

(Refer Slide Time: 26:00)

I-I-"‘

vk ikt s ST L5 gy i TRt bl

jUzers/mani/Desktop/NPTEL Matiab_Codetest_Newton_system m'

1 : men 54 el v [T s
E\P\JH”"""‘“ o o I K N - e .
~ GiGain - Comment %
Wrsakpoints Ran Runand || Adwince Runang
" sl Time.
aviGaTc o carronTs T
Lest_Newton_sys ten()

1
2- |ee

3 vexpected = [2.22; 1.1115 % test Cose-1
4= | expacted = [2; 3); % test Case-?

5- | tol = le-d;

6 L, B = Newton_systenter, @, 18 11, tol)s
7 =12 1]

B error = norm(expected - x);

9= | fprintf(‘L 2 error is =Ag \n', arror);

10- end
n ATOST Cage-1

12 % function F_vector = I(x)

13 Fvector = [x(1)24x(2)*2-x(2)=5

14)-exp(-x(1))-11; \ Becareful about spacing on wrtiting F_vector

15 end

15 \ function J_matrix = 3(x)

1 od_matrix = [2ex(1) 2ex(2)-1;

18 axp(=x(1)) 11;

19 end

» Test Case-2

n function r_vector = F(x)

i Fovector = [x(1)*3=3wx(1)#x(2)"2=39x(1)#52;. ..

3 34x(1)~24K(2)-X(2)*3-3#x(2)]; \ Becareful about 5pacing on wrtiting F_vector
2

5 function J_matrix = J(x)

26~ | J_matrix = [3ex(1)~2=3wx(2)"2=3 =6wx(1)ex(2);. ..

”n Bex(1)#x(2) Fex(1)72-34x(2)°2-3);

W~ end

test_Newton_system Ln 6 Col 34

Em Em ™

ThaslsReport.pdf NUMTA2019 LNCS ma15d080 theals. DTU MarksRGrada Macintosh HD
paf "

MATLAB R2015b
i @ scarch Docunf

(L New Varlabla 4 AnalyzaCada
i
Ly’ Run and Time.

1 » Users » manl » Dosktop » NPTEL Matlab Code

Tl m A
® Command Window

Current folder
o initial approximation is
() C. Woodford, C. Phillips (auth.)- Numerical Method.. AL LT, XD, 666687, 40.339033
bisection.m
« figure1. X
igure . fig

Workspace

Narme &

“expe

0.
x=17.240901, y=13.165434

- “) tirsstm

E) fixedpt.m
:‘: atest Sl mainlm 8.793818
b T matiab.pdf
T i matlabsym.mn
> . matlabsym.pdf
is o Mupad_tutarial df

7] Newton.m

16 v

) Newton_system.m
£ N‘wlon_iy\"mvm‘.

18
19 yoend £ regul

2 wTed & scnrm .5001_5001_T017.mp4
21 funce £ testl

TRt [[——

23| 3ex(1) test Newton system.me

2 end | THtutorialS.pdf

2 funct

- | Jmat

7 eex(1

- |end

NPTEL

Details

Maybe I start with 0 and 1 and let us see whether we are heading toward the same root or the
different root. So, from here, you can see that we started with this one, and in this case, the
iterations are large, 13 but after the 13 iterations, I am heading toward the root. So, this is the

approximation of the root and 12 error is 10 . So that is the value of the root of the function F

(z) equals 0.

(Refer Slide Time: 26:41)

E = Hm ™

ThaslsRaport.pdf NUMTA2019 LNCS ma15d0B0_thasls. DTU_Marks&Grada Macintosh HD
pdf "

MATLAB R20155

(L = e DN == W ¢ Analyzs Cada
= bl u

ow apen " Lkt

=) me
Jnets % () $ (/> Users » mani » Dacktop » NPTEL Marlap Code
“expe Current Folder RN Co Jow Workspace
“ initial approximation iz x=0.000000, y=1.000000 ikt
LUr=1, x=8.666667, y=0.333333
X=5.622801, y=0.237326

() C. Woodford, C. Phillips (auth.)- Numerical Mathod...
bisection.m At

AL) x=3.307812, y=0.201884
A ¥-0.706357, y-0.350372
| L A Xx=17.240001, y=13.165434
W';:e_n;n;n At x=11.508702, y=8.793818
i A X<7.687569, y=5,914317
TH matia.pdf At ¥=5,133725, y=4,079336
i matiabsym.mn At X=3.418487, y=3.050851
matlabsym.pdf A -2.320591, y=2.758912
i Mupad_tutorial.pdf At itrell, x=1.974402, y=2.962733
] Newton.m AL Ltr=12, x=2.
£ Newton_system.m AT itre13, xe2. y=3
Newton_system.m= Lz error is =b.3/097e-08
£ regulam >

& SGNFLM_S001_S001_TO17.mp4 bl

] testlm

) test_Newton_system.m

| test Newton_system.m~
2 end | TH tutonial5.pdf

s funct
- | 3 mai
7 Bex(1
- end

Em A m™

ThaslsReport.pdf NUMTAZ019 LNCS ma15d080 thasls. DTU Marks&Grada Macintosh HD
pdf s

MATLAB R2015b
2l I C scarch Docun
¢ Anayaa Code
Ly Run and Time

@G (5
{3 Conmuniy
o S5 pone e e

— —— . anams
5‘::2‘4‘4 # 0§ [0/ » Usars » manl » Dasktop » NPTEL Matlab Code
Sept Cltrent Folder Ell Co dow Workspace
e + e »
b | %(»c. Woodford, C. Phillips (suth.)-Numerical Mathod... :':fﬁfﬁ:“:‘:,’“ff""f‘?"',f,: e ":'::f:’m ”'q\":';:,. ;
bisectio > In Newton_system (iine 11)
2 flgure.opc i ekt Savedn gkaten 1 ine.4)

AT itral, x= -Inf, y= NN
L2 error iy shoh

poom
T matlab.pdf
i matiabsym.mn
matiabsym.pdf
g Mupad_tuterial.pdf
6 /] Newton.m
17) Newton_system.m
» o Newton system.m
19 woeng) regulam
20 o Tes & SGNFLM_S0D1 S001_TO17.mpd
2 runet fltestlm
FA M [O ——
n Jax(1 | test Nowton systam.m=~ 1
24 end | T utorialS.pdf
25 0 funet
- | Jmat
7 el

Em Em™

TheslsReport.pdf NUMTAZ019 LNCS ma15d080_theals. DTU_Marks@Grade Macintosh HD
pdf "

[Uzers/mani/Dezkop/NPTEL Matiab_Codotest_Newton_system m'

PUSLISH

L | L4 Find Fles < et oo o [

o e e e BN (| i

o o sy S " A0 ML S oy s | s o

SR e e e e (] s T A Time:
g | wn e o b

1 function test_Newton_system()

2- [ee

3 .22; 11215 & test Case-1

4= ..,\ un |7 305 & test Case-2

5 tol = le-4;

65|l 0w ystendar, @, (05 281, W0

7wz

8 error = norm(expected = x);

9- Fprlntf(L_2 error is =Ag \n', arror);

10-

il)

12 ' rvector = Fo

5w Tl 2ox(2) 51

1 exp(-x(1))-1); v Becaretul about spacing on wrtiting F_vector

15

16

I -1

"

19

0

2 runction P_vector = F(x)

[Ector = () A ena1 g 11052

3 3ax(1)~2ex(2)-x(2)~3-3ax(2)]; * De AL/ t 5p 9 titing F t

24 end

25 F nction) matrix = J(x)

26 matrix = [3ex(1)"2-3#x(2)*2-3 -6+x(1)#x(2);

27 Nx(”wk(?) Iex(1)"2-3#x(2)"2-3)

2 -

b‘\)
NPTEL

Lest_Newton_system n 6 Col 38

[id (L Now Variabla & Analyza Coda
1> OpenVariable = (i Run and Time.

il 52 O grene & 5 | (T @ B (g ety
e A o P R L e N
Y vml--u ucuﬂmu.n ~ 4 Clear Cammands < Lbrary. =

— o — T a— e —

o @ (il T 00/ > Users » mani » Dosktop » NPTEL Matlab

5 rrent Folder ¢ W Workspace
© | oxpac [Namo o == = Nama »

S ?uyr Woodluvd C.Phillios Guth)-Numarical Method.. | a1 o aaraet, yeasodiare

6 At Ltre2, x-3.331078, y-10.624140

7 2 'rlﬂlmlr'“ AU LLr=3, x=2,352650, y=7.104704

o _jl':nm Ll At {tred, x«1.841839, y=d.832317

- AU Ltrss, x=1.750147, y=3.511395

10 - AT {tr=6, x=1.926106, y=3.021962

n At itr=7, x=1,999863, y=2,998401

12 v tun AT {tr=8, x=2.000000, y-3.000001

13 w Fy U mauatsymmn L_2 error iz =6.92614e-07

e h matiabsym.pdf o

v 2
15 woend X Mupad_tuterial.pdf
16 tun =) Newton.m
& Newton_system.m
A oxp | Newton_system.m-
b I
19 wend Clreguam
fy @ SCNFLM_S001_S001_TOL7.mpd
#] testl.m
) test_Newton_system.m
) tost Newran systom.m-

. (258 W onson
35 funct I
T
7 Gex(1
kL end

\ *

N)

NPTEL

Detail: ~

Even though I can change this value and I can take this initial approximation. So, we cannot
give the value 0 here. So maybe I should give it 0.5 and let us see. Now it is okay. And after
taking this value, my iteration is after 8 iteration I am getting this value. So, by this way I can

solve different different equations.

Or maybe this is for 2-dimensional we have taken. Similarly, we can define for
3-dimensional. So, in that case, my function here in this column vector will be another. So,

this is the first vector first value, second value, the third value we can define. And the same

way that Jacobian will be changed.

Because if I take three functions, then the size of these Jacobian is a 3 by 3 matrix. So in this
way, we can find the roots of a system of equations. It may be 2-dimensional, 3-dimensional
using the Newton system method. So, we just have to change the value of the function here.

And by doing this program, you can find the root of the equation.

So, this is, we are able to find the root of the equation using the Newton-Raphson method for
the system of equations. So that is the end of this unit. From the next lecture, we are going to
start with another unit that is how to deal with the linear systems and eigenvalue problems.

So, thanks for watching this lecture. Thanks very much.

