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MATLAB Code for Newton Method for Solving System of Equations

Hello viewers, welcome back to lecture number 17. So, today we are going to discuss lecture

17. So, in the previous lecture, we discussed how we can apply the Newton-Raphson method

for solving a system of equations. So, today we will do the example based on that one and

then we will do the MATLAB coding.
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So, let us do one example here using the Newton method for the system. So, we are talking

about here the 2-dimensional system like suppose I have f(x, y).

I want to find the roots of this equation. So, this is the case 1 I can take. So, this we will solve

using the MATLAB code.

Now, I take the case 2, that how we can find the complex root. So, suppose I have a function

in z, F(z)= 0 where z is a complex number x + iy. So, in this case, let us take the example that

So, suppose z naught is equal to x naught plus iy naught is the root; is a root of this equation.



So, you know that this is in the complex form and in fact it is an analytic function. So, I can

split this function as a function of x + iy. So, this z is there so I should write this as the capital

F. So, it is capital F.

I can collect the real terms and the imaginary terms.
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So that will be the real part and the imaginary part. So, from here I can write my F(z) is equal

to this.

So, then we can say, so whatever the value of x and y I am getting from here, I can write that

z is equal to that x0 + iy0 is a root of equation number, I can take this equation number 1. So,

by this way, we can find the root of the equation. So, let us go to the MATLAB code. Let us

MATLAB code. So today, let us start with the MATLAB code.
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So, today I have already made the code for you because now we are familiar with how to

write a code. So, let us start with the code I have made. So, this is the code we have I have

started with. So that is the function value. So, this is the function and it gives you the x and

iteration. Now, I keep the name Newton_system.

So, this capital F is the function that is whatever we are going to define. J is the Jacobian that

we already know how to because in this case I have to find the Jacobian also.

Where x= [ x(1)  x (2)] and this is the tolerance we are given.

So, this program solves nonlinear system F=0 by Newton method. J is Jacobian; Jacobian we

know that it is a partial derivative with respect to the variable x and y. So, that is the Jacobian.



So, this is my x= [ x(1) x (2)]. And that x =x0 is the starting value, the initial value what we

are going to start with.

So, now from here I write that F (x). So, whatever the function I am getting I put the value of

x and I get the value of fy, F_value. Then, in this case because it is a vector valued function,

so we have to find the norm of that one; instead of absolute value, we are finding the norm.

So, l2 norm if we take, so this will be the l2 norm. So, that will be the norm.

function [x, itr] = Newton_system(F, J, x, tol)

% This prog. solves nonlinear system F=0 by Newton?s method.

% J is the Jacobian of F. Both F and J must be functions of x=(x(1),x(2)).

% At input, x=x0 holds the start value. The iteration continues

% until norm(F) < tol.

F_value = F(x);

F_norm = norm(F_value); % l2 norm of vector

itr = 0;

fprintf('initial approximation is x=%7.6f, y=%7.6f \n',x(1),x(2));

while F_norm > tol && itr < 100

delta = J(x)\(-F_value); % Solving the system J delta =- Fvalue

x = x + delta;

F_value = F(x);

F_norm = norm(F_value);

itr = itr + 1;

fprintf(' At itr=%d, x=%7.6f, y=%7.6f \n', itr, x(1),x(2));

end

% Here, either a solution is found, or too many iterations

if F_norm > tol



itr = -1;

end

end

Now, I will put the value of delta in the initial approximation and my approximation x will be

improved and then I will find the value of F because this is a function we are passing. So,

whatever the new x I am getting here, I will get the value of the function here. So, that is the

F value and the same one it is the norm of that function.

Now, I will find the iteration, increase the iteration by 1 and then I will be making the print of

that one that what is the root of this finding the root at each iteration. So, this will be written

here and then it will do the end of this while loop. And now, if it is here that here either a

solution is found or too many iterations.

So, if F_norm is greater than tolerance, iteration will be minus 1 and then this is the end of

the function. So, this function I have started with the name Newton_system. So, this name

and the file name will be the same. So, this is my function we are calling. Now I have to write

the main program. So, the main program is written like this.
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So here because we are dealing with the system of equations, so I am writing this function in

the form of a function value. So, I am writing: function test_Newton_system and no

argument. It means it is, it will work as a script file. So, in this case, I will start with the name

of this function that it test_Newton_system. So, I will start with the clc whatever is written

there. Then, I will give the expected value; expected root. So, whatever the root I am going to

expect, so I will write here then I will pass the tolerance. And then this is the function I am

calling from here the Newton_system what just we have defined.

function test_Newton_system()

clc

%expected = [2.22; 1.11]; % test Case-1

expected = [2; 3]; % test Case-2

tol = 1e-4;

[x, n] = Newton_system(@F, @J, [1; .5], tol);

%x=[2; 1]

error = norm(expected - x);

fprintf('L_2 error is =%g \n', error);

end



%Test Case-1

% function F_vector = F(x)

% F_vector = [x(1)^2+x(2)^2-x(2)-5;...

% x(2)-exp(-x(1))-1];  % Be careful about spacing on writing F_vector

% end

% function J_matrix = J(x)

% J_matrix = [2*x(1) 2*x(2)-1;...

% exp(-x(1)) 1];

% end

% Test Case-2

function F_vector = F(x)

F_vector = [x(1)^3-3*x(1)*x(2)^2-3*x(1)+52;...

3*x(1)^2*x(2)-x(2)^3-3*x(2)]; %Be Careful about spacing on writing

F_vector

end

function J_matrix = J(x)

J_matrix = [3*x(1)^2-3*x(2)^2-3 -6*x(1)*x(2);...

6*x(1)*x(2) 3*x(1)^2-3*x(2)^2-3];

end

So, this is a function passing at the rate (@). So the unanimous function I am passing. So, this

is the F, that is the Jacobian. This is the initial approximation that was the x here, and that is

the tolerance we are passing. And then the error, I am finding the norm. So, norm is l2 norm.

Expected value, whatever the root is there, minus whatever the approximation we are getting.

So, I am finding that error and here I am printing the error. So, this is a function we are

finding here.
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So now, I will start with my case 1 and case 2. So, let us start with so I will just be starting

with the case 1. So, this is I am going to start with. Now my expected value will be 2.22 and

1.11 for the test case 1; so, whatever the test case 1 I have taken, okay. So, in this case, I am

starting with the initial 1, 1 and tolerance I am taking 10-4 .

Now I will start with the function. So, my function was x2 + y2- y - 5. So, I am finding writing

a function that is a vector value.

function F_vector = F(x)

F_vector = [x(1)^2+x(2)^2-x(2)-5;...

x(2)-exp(-x(1))-1];

end

And the second value is, here I am writing the semicolon means I am writing a column vector

and these 3 dots are that if the vector is, if the value of the function is very large then

sometime, we have to write the value in the next in the line. So, to further continue the line

we put the 3 dots. So, it means that the next line will be the continuation of this one.

So, this is my first function and the second function g (x, y) was y- e-x-1. So that is the

function value we have defined. So, we have defined a column vector with the F (x, y) here

and g (x, y) here. Now, this is the first function we have defined. Now I have defined the

Jacobian. So, the J_matrix I am defining. So, from here I am taking the value of x. So, J (x)

will be defined here. So, the J_matrix is equal to J (x). So, J_matrix will be what? I am taking

the partial derivative of this function.



function J_matrix = J(x)

J_matrix = [2*x(1)  2*x(2)-1;...

exp(-x(1))   1];
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So, x square so let us say from here. So, I am taking the Jacobian now. So, Jacobian basically

is this one.

So this is the Jacobian.

I am going to pass for this function. So, this is my J (x) and F_vector I have defined like this

one: f (x, y) and g (x, y) and this x in the code I have defined is a vector. So, x (1) and x (2).

So, basically this is my x and this is my y because in the MATLAB code, we have to define

the multivalued vector in this form or multivalued variable in this form: x and y (in the vector

form). So, that is what we are going to define.
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The same way for this function. Now, I will define my F (z).

and
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So, this is the way we have defined. So, let us write my J (x) here. So, now my J (x) is

defined. So, as in the previous one, we defined the J (x). So, J (x) was, so it was 2x then 2y-1

e-x and 1. So, that is my Jacobian. So, now from here I will get the value of x. From here, I

will pass the value of F_vector. So, F_vector is equal to f(x) and J matrix is equal to g(x).

And these vectors, these values of the vectors will be passed to this function. So, at the rate

(@) F and at the rate (@) means this is a function value. Now, let us run this one.
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So, let us so there is some end term. So, this is we have to write function end, function end

and then function end. This is the test case so we have to write like this one. Now, find the

value of the function. So, this is so I started with 1, 1 and after 5 iterations, that is my

solution. So, it is 2.20 and 1.10. And my error, l2 error is giving is finding here 0.011. So, this



is the value we are getting because here the expected value is also not known. It is just the

approximation value of the roots. So, that is why whatever the value we are getting is the

value corresponding to, the error corresponding to this expected value.
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Now, we can even change the initial condition and then let us run this one. So, in this case,

you can see that even with the three iterations we are getting the solution and the error is this

one. So based on that, whatever the value you are going to take, let us see with the 0, 1. So,

see, in this case, we have to take 8 iterations and the results are giving you the different roots.

So, it is giving the x is equal to this value and y is equal to this value. So, in this case, my root

is not getting the same one because you have to tell in the initial that around which you are

going to find the root. So, in this case, I am going to find the root near to 2.22 and 1.11. So

that is why I have to start with this value.
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Or maybe I can start with 1.5. And then let us see what will happen? Now we are adding

convergence to this root. So, it is based on which roots you want because it may have more

than one root and you do not know which roots you are going to find. So, in this case, I am

going to find the root here. So, I take this initial condition and based on this initial condition I

am my route is converging to 2.20 and 1.10. So, this is what we expected. So that is the way

we can solve the test case 1.
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Now I will do the test case 2. So, I will comment on this one, and we will start with this. So,

let us do the test case 2. So, in this case, I will change my expected value. So, in this case, the

complex functions whatever we have defined, so this is the function we have defined: The

F_vector is x3-3xy2-3x+52. So, that was my f (x, y) and the second was 3x2y-y3-3y.

So, that was my g (x,y); the other function. And the Jacobian we have defined.

So, Jacobian we are getting and I am expecting this value as 2 and 3 as a root of this. So, we

will start with this same initial condition, and I run this one and let us see.

So, based on this one initial approximation (1, 1) after the seventh iteration, we are getting

my root 2, 3. And because in this case, we already know the exact value of the root that is 2

and 3. So you can see that l2 error is very small; 10-12 . So, in this case, my root is almost

after 7 iteration, our root is very close to the exact value. It is converging very fast. So maybe

I can take some other condition.
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Maybe I start with 0 and 1 and let us see whether we are heading toward the same root or the

different root. So, from here, you can see that we started with this one, and in this case, the

iterations are large, 13 but after the 13 iterations, I am heading toward the root. So, this is the

approximation of the root and l2 error is 10-8 . So that is the value of the root of the function F

(z) equals 0.
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Even though I can change this value and I can take this initial approximation. So, we cannot

give the value 0 here. So maybe I should give it 0.5 and let us see. Now it is okay. And after

taking this value, my iteration is after 8 iteration I am getting this value. So, by this way I can

solve different different equations.

Or maybe this is for 2-dimensional we have taken. Similarly, we can define for

3-dimensional. So, in that case, my function here in this column vector will be another. So,

this is the first vector first value, second value, the third value we can define. And the same

way that Jacobian will be changed.



Because if I take three functions, then the size of these Jacobian is a 3 by 3 matrix. So in this

way, we can find the roots of a system of equations. It may be 2-dimensional, 3-dimensional

using the Newton system method. So, we just have to change the value of the function here.

And by doing this program, you can find the root of the equation.

So, this is, we are able to find the root of the equation using the Newton-Raphson method for

the system of equations. So that is the end of this unit. From the next lecture, we are going to

start with another unit that is how to deal with the linear systems and eigenvalue problems.

So, thanks for watching this lecture. Thanks very much.


