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Welcome students, to the MOOC’S course on fuzzy sets, arithmetic and logic. This is lecture 

number 30. If you recall in the last class I started with, Evidence theory. 
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In fact, given a set 𝑋 of alternative decisions we have given 3 definitions:  

 𝑚: 𝑃(𝑋) → [0, 1] this is the 𝐵𝑎𝑠𝑖𝑐 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 to a subset of 𝑋, 

 𝐵𝑒𝑙(𝐴) = ∑ 𝑚(𝐵)𝐵⊆𝐴   where 𝐴, 𝐵 ∈ 𝑃(𝑋) 
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 𝑃𝑙(𝐴) = ∑ 𝑚(𝐵)𝐵|𝐵∩𝐴≠𝜙   

 And we have talked about 𝐷𝑒𝑚𝑝𝑠𝑡𝑒𝑟’𝑠 𝑅𝑢𝑙𝑒 for the combination of multiple evidences.  
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We started working on a problem such that  

𝑋 = {𝐴, 𝐵, 𝐶} 

Two sources of evidences 𝑚1 and 𝑚2.   

And we started working on computing, their 𝐵𝑒𝑙𝑖𝑒𝑓 and also combining them.  

In this respect, we have come to this table.  
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Where the 𝑚1 and 𝑚2are the evidences for different non empty subsets and using the formula we 

have calculated the 𝑚12 a combination of the evidences for different subsets of 𝑋.  
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The  formula for the combination was 

𝑚12(𝑃) =
∑ 𝑚1(𝑌) × 𝑚2(𝑍)𝑌∩𝑍=𝑃

1 − 𝐾
 

 Where 𝐾 = ∑ 𝑚1(𝐵) × 𝑚2(𝐶)𝐵∩𝐶=𝜙   
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 𝑚12(𝐴) 

=

(

𝑚1(𝐴) × 𝑚2(𝐴) + 𝑚1(𝐴) × 𝑚2(𝐴 ∪ 𝐵) + 𝑚1(𝐴) × 𝑚2(𝐴 ∪ 𝐶)

+𝑚1(𝐴) × 𝑚2(𝐴 ∪ 𝐵 ∪ 𝐶) + 𝑚1(𝐴 ∪ 𝐵) × 𝑚2(𝐴) + 𝑚1(𝐴 ∪ 𝐶) × 𝑚2(𝐴)

+𝑚1(𝐴 ∪ 𝐵 ∪ 𝐶) × 𝑚2(𝐴) + 𝑚1(𝐴 ∪ 𝐵) × 𝑚2(𝐴 ∪ 𝐶) + 𝑚1(𝐴 ∪ 𝐶) × 𝑚2(𝐴 ∪ 𝐵)
)

1 − 𝐾
  

Thus we have 9 pairs of subsets whose intersection is {𝐴} 

 In a similar way, you can compute these values and all other values in particular. 

Let us now look at calculation of 𝐵𝑒𝑙𝑖𝑒𝑓, since, for each one of them, we can calculate the 

𝐵𝑒𝑙𝑖𝑒𝑓 for illustration, I am just showing for one of them.  
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So, let us compute 𝐵𝑒𝑙12 

 𝑚12 𝐵𝑒𝑙12 𝑃𝑙12 

𝐴 0.21   

𝐵 0.01   

𝐶 0.09   

𝐴 ∪ 𝐵 0.12   

𝐴 ∪ 𝐶 0.2   

𝐵 ∪ 𝐶 0.06   

𝐴 ∪ 𝐵 ∪ 𝐶 0.31   

 

We are going to calculate 𝐵𝑒𝑙12 and 𝑃𝑙12. How to compute them?  . 
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So far, you recall  

 𝐵𝑒𝑙(𝑃) = ∑ 𝑚(𝑄)𝑄⊆𝑃   
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Therefore, what we will have  

 𝑚12 𝐵𝑒𝑙12 𝑃𝑙12 

𝐴 0.21 0.21  

𝐵 0.01 0.01  

𝐶 0.09 0.09  

𝐴 ∪ 𝐵 0.12 0.34  

𝐴 ∪ 𝐶 0.2 0.5  

𝐵 ∪ 𝐶 0.06 0.16  

𝐴 ∪ 𝐵 ∪ 𝐶 0.31 1.0  
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Let us now come to 𝑃𝑙𝑎𝑢𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦, can be computed in two different ways: 

 𝑃𝑙(𝑃) = ∑ 𝑚(𝑄)𝑄|𝑃∩𝑄≠𝜙   

 𝑃𝑙(𝑃) = 1 − 𝐵𝑒𝑙(𝑃̅) 
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Therefore, 

 𝑚12 𝐵𝑒𝑙12 𝑃𝑙12  

𝐴 0.21 0.21 0.84 1 − 𝐵𝑒𝑙12(𝐵 ∪ 𝐶) 

𝐵 0.01 0.01 0.5  



𝐶 0.09 0.09 0.66 1 − 𝐵𝑒𝑙12(𝐴 ∪ 𝐶) 

𝐴 ∪ 𝐵 0.12 0.34 0.91  

𝐴 ∪ 𝐶 0.2 0.5 0.99  

𝐵 ∪ 𝐶 0.06 0.16 0.79  

𝐴 ∪ 𝐵 ∪ 𝐶 0.31 1.0 1.0  
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So, let us now compute 𝑃𝑙𝑎𝑢𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 using the other formula and that formula is  

𝑃𝑙(𝑃) = ∑ 𝑚(𝑄)

𝑄|𝑃∩𝑄≠𝜙  

 

Therefore, we have 𝑋 = {𝐴, 𝐵, 𝐶}  

Therefore,  

𝑃𝑙12({𝐴}) = 𝑚12(𝐴) + 𝑚12(𝐴 ∪ 𝐵) + 𝑚12(𝐴 ∪ 𝐶) + 𝑚12(𝐴 ∪ 𝐵 ∪  𝐶) 

= 0.21 + 0.12 + 0.2 + 0.3 = 0.84 
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In a similar way,  

𝑃𝑙(𝐵) = 𝑚12(𝐵) + 𝑚12(𝐴 ∪ 𝐵) + 𝑚12(𝐵 ∪ 𝐶) + 𝑚12(𝐴 ∪ 𝐵 ∪ 𝐶) 

= 0.01 + 0.12 + 0.06 + 0.31 = 0.5  

 Let me calculate one more for you so  

𝑃𝑙(𝐴 ∪ 𝐵) = 𝑚12(𝐴) + 𝑚12(𝐵) + 𝑚12(𝐴 ∪ 𝐵) + 𝑚12(𝐴 ∪ 𝐶) + 𝑚12(𝐵 ∪ 𝐶)

+ 𝑚12(𝐴 ∪ 𝐵 ∪ 𝐶) = 0.21 + 0.01 + 0.12 + 0.2 + 0.6 + 0.31 = 0.91 
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 𝑚12 𝐵𝑒𝑙12 𝑃𝑙12 

𝐴 0.21 0.21 0.84 

𝐵 0.01 0.01 0.5 

𝐶 0.09 0.09 0.66 

𝐴 ∪ 𝐵 0.12 0.34 0.91 

𝐴 ∪ 𝐶 0.2 0.5 0.99 

𝐵 ∪ 𝐶 0.06 0.16 0.79 

𝐴 ∪ 𝐵 ∪ 𝐶 0.31 1.0 1.0 
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Now, let me give you some definitions  

For any set 𝑃 ∈ 𝑃(𝑋), 𝑃 is called a 𝑓𝑜𝑐𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 of 𝑚 if 𝑚(𝑃) > 0  

This is because the nonzero basic probabilities are our concern.  

Therefore we will focus only on those for which 𝑚(𝑃) > 0  

Another definition is this 

The set of focal elements along with their 𝑚 values together is called 𝐵𝑜𝑑𝑦 𝑜𝑓 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒. And we 

denoted it as (𝔉, 𝑚). where 𝔉 is the set of all 𝑓𝑜𝑐𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 and 𝑚 is the 

𝑏𝑎𝑠𝑖𝑐 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡.  
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Now with the above definition we go for some special case of evidence theory.  

Suppose the 𝑏𝑜𝑑𝑦 𝑜𝑓 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒 is such that the focal elements are nested then the corresponding 

theory is called 𝑃𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝑇ℎ𝑒𝑜𝑟𝑦. 
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So let me first give an illustration, suppose we have 𝑛 elements in 𝑋 and the focal elements are: 

{𝑥1}, {𝑥1, 𝑥2}, {𝑥1, 𝑥2, 𝑥3} … {𝑥1, 𝑥2 … 𝑥𝑛} 

It is not mandatory that all the elements will have to be there. This is a simplest way of looking at 

it.  
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One could have x1, x1 x2 x3 then x1 x2 x3 x4 x5. So like that if these are the focal elements, then 

also we could have got nested sets and that also would have given us possibility theory. 
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The nested cases has one advantage that: 

𝐵𝑒𝑙(𝐴 ∩ 𝐵) = min(𝐵𝑒𝑙(𝐴), 𝐵𝑒𝑙(𝐵))  

𝑃𝑙(𝐴 ∪ 𝐵) = max(𝐵𝑒𝑙(𝐴), 𝐵𝑒𝑙(𝐵)) 
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This is very easy to visualize in the example that I have given.  

Let 𝐴 ⊂ 𝐵 

∴ 𝐵𝑒𝑙(𝐴 ∩ 𝐵) = 𝐵𝑒𝑙(𝐴)  

∵ 𝐴 ∩ 𝐵 = 𝐴  

∴ 𝐵𝑒𝑙(𝐴) < 𝐵𝑒𝑙(𝐵)  

∴ 𝐵𝑒𝑙(𝐴 ∩ 𝐵) = min(𝐵𝑒𝑙(𝐴), 𝐵𝑒𝑙(𝐵))   
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We now prove the result for general case  

Let 𝔉 = {𝐴1, 𝐴2 … 𝐴𝑛} such that each 𝐴𝑖 is a focal element also as they are nested, we can order 

them linearly.  



𝑖. 𝑒. 𝐴1 ⊆ 𝐴2 ⊆ 𝐴3 ⊆ ⋯ ⊆ 𝐴𝑛  

𝑖. 𝑒. 𝐴𝑖 ⊆ 𝐴𝑗  if 𝑖 < 𝑗 
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Consider two arbitrary sets 𝐴, 𝐵 ⊆ 𝑋 

Let 𝑋 = {1, 2, 3, … , 10}  

Suppose 𝔉 is as follows: 

𝐴1 = {1}  

𝐴2 = {1, 2, 3}  

𝐴3 = {1, 2, 3, 6}  

𝐴4 = {1, 2, 3, 6, 7}  

𝐴5 = {1, 2, 3, 6, 7, 8}  

𝐴6 = {1, 2, 3, 6, 7, 8, 10}  

You can easily verify that 𝐴𝑖 ⊆ 𝐴𝑗 if 𝑖 < 𝑗 
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Let us take two subsets 𝐴 and 𝐵 of 𝑋.  

Let 𝑖1 be the largest index such that 𝐴𝑖𝑖
⊂ 𝐴 

Similarly let 𝑖2  be the largest index such that 𝐴𝑖2
⊂ 𝐵.  

So example: 

𝐴 = {1, 2, 3, 4}  

𝐵 = {1, 2, 3, 5, 6}   

Then if we compare then, I can see 𝐴2 is the largest index such that 𝐴2 ⊂ 𝐴 and therefore 𝑖1 = 2 

And 𝐴3 is the largest index such that 𝐴3 ⊂ 𝐵. Therefore 𝑖2 = 3 

 (Refer Slide Time: 37:22) 

                               



Note that: 

∀  𝑗 ≤ 𝑖1   𝐴𝑗 ⊆ 𝐴  

&  ∀  𝑗 ≤ 𝑖2   𝐴𝑗 ⊆ 𝐵  

∴ 𝐴𝑗 ⊆ 𝐴 ∩ 𝐵 if 𝑗 ≤ min(𝑖1, 𝑖2) 

Hence 𝐵𝑒𝑙(𝐴 ∩ 𝐵) = ∑ 𝑚(𝐴𝑖)
min(𝑖1,𝑖2)
𝑖=1  

= min(∑ 𝑚(𝐴𝑖)
𝑖1
𝑖=1 , ∑ 𝑚(𝐴𝑖)𝑖2

𝑖=1 ) = min(𝐵𝑒𝑙(𝐴), 𝐵𝑒𝑙(𝐵))   
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One very interesting point with respect to nested focal elements is that 𝐵𝑒𝑙𝑖𝑒𝑓 is increasing.  
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For illustration, consider two element case 

𝐴1 = {𝑥1} and 𝐴2 = {𝑥1, 𝑥2}  

∴ 𝐵𝑒𝑙(𝐴1) = 𝑚(𝑥1)  

𝐵𝑒𝑙(𝐴2) = 𝐵𝑒𝑙({𝑥1, 𝑥2}) = 𝑚(𝑥1) + 𝑚(𝑥2) + 𝑚({𝑥1, 𝑥2}) = 𝑚(𝑥1) + 0 + 𝑚({𝑥1, 𝑥2}) > 0  

∴ 𝐵𝑒𝑙(𝐴2) = 𝐵𝑒𝑙(𝐴1) + 𝜖  (𝜖 > 0)  
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Therefore, we can see that as one element is added the belief is increased.  

This is true if we keep on adding more elements such that focal elements are nested.  

Note: The above is NOT TRUE for a  general case. 
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In a similar way  

𝑃𝑙(𝐴 ∪ 𝐵) = 1 − 𝐵𝑒𝑙(𝐴 ∪ 𝐵̅̅ ̅̅ ̅̅ ̅)  

      = 1 − 𝐵𝑒𝑙(𝐴̅ ∩ 𝐵̅)  

      = 1 − min(𝐵𝑒𝑙(𝐴̅) , 𝐵𝑒𝑙(𝐵̅) ) 

      = max(1 − 𝐵𝑒𝑙(𝐴̅) , 1 − 𝐵𝑒𝑙(𝐵̅) ) 

      = max(𝑃𝑙(𝐴), 𝑃𝑙(𝐵))  
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Since in the nested case  

𝐵𝑒𝑙 → 𝑁𝑒𝑐𝑒𝑠𝑠𝑖𝑡𝑦 (denoted as 𝑁𝑒𝑐) 

𝑃𝑙 → 𝑃𝑜𝑠𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 (denoted as 𝑃𝑜𝑠) 

Therefore we can write  

𝑁𝑒𝑐(𝐴 ∩ 𝐵) = min(𝑁𝑒𝑐(𝐴), 𝑁𝑒𝑐(𝐵)) 

𝑃𝑜𝑠(𝐴 ∪ 𝐵) = max(𝑃𝑜𝑠(𝐴), 𝑃𝑜𝑠(𝐵)) 
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Since we have already seen in the last class  

1. 𝐵𝑒𝑙(𝐴) + 𝐵𝑒𝑙(𝐴̅) ≤ 1 ⇒ 𝑁𝑒𝑐(𝐴) + 𝑁𝑒𝑐(𝐴̅) ≤ 1 

2. 𝑃𝑙(𝐴) + 𝑃𝑙(𝐴̅) ≥ 1 ⇒ 𝑃𝑜𝑠(𝐴) + 𝑃𝑜𝑠(𝐴̅) ≥ 1 

3. 𝑃𝑜𝑠(𝐴) = 1 − 𝑁𝑒𝑐(𝐴̅) 
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We may further observe  

1. 𝑀𝑖𝑛(𝑁𝑒𝑐(𝐴), 𝑁𝑒𝑐(𝐴̅)) = 0 

This is ∵ 𝑀𝑖𝑛(𝑁𝑒𝑐(𝐴), 𝑁𝑒𝑐(𝐴̅)) = 𝑁𝑒𝑐(𝐴 ∩ 𝐴̅) = 𝑁𝑒𝑐(𝜙) = 0 

2. 𝑀𝑎𝑥(𝑃𝑜𝑠(𝐴), 𝑃𝑜𝑠(𝐴̅)) = 1 



This is ∵ 𝑀𝑎𝑥(𝑃𝑜𝑠(𝐴), 𝑃𝑜𝑠(𝐴̅)) = 𝑃𝑜𝑠(𝐴 ∪ 𝐴̅) = 𝑃𝑜𝑠(𝑋) = 1 
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So, thus possibility values in a nested case of 𝐵𝑜𝑑𝑦 𝑂𝑓 𝐸𝑣𝑖𝑑𝑒𝑛𝑐𝑒 ∈ [0, 1]  

In that sense it is close to probability theory.  

But one major difference is that: In probability we assign values to each element but here, in 

possibility theory.  
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The values are assigned to different subsets of the universe that is the set 𝑋 and that too they are 

nested.  
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Let me now conclude the talk with the following theorems  

1. 𝑁𝑒𝑐(𝐴) > 0 ⇒ 𝑃𝑜𝑠(𝐴) = 1 

2. 𝑃𝑜𝑠(𝐴) < 1 ⇒ 𝑁𝑒𝑐(𝐴) = 0 

Proof : 

1. Since 𝑀𝑖𝑛(𝑁𝑒𝑐(𝐴), 𝑁𝑒𝑐(𝐴̅)) = 0 

If 𝑁𝑒𝑐(𝐴) > 0 ⇒ 𝑁𝑒𝑐(𝐴̅) = 0 

∴ 𝑃𝑜𝑠(𝐴) = 1 − 𝑁𝑒𝑐(𝐴̅) = 1 − 0 = 1  
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2. 𝑃𝑜𝑠(𝐴) < 1 ⇒ 𝑁𝑒𝑐(𝐴) = 0 

We know 𝑀𝑎𝑥(𝑃𝑜𝑠(𝐴), 𝑃𝑜𝑠(𝐴̅)) = 1 

∴ 𝑃𝑜𝑠(𝐴) < 1 ⇒ 𝑃𝑜𝑠(𝐴̅) = 1  

∴ 𝑁𝑒𝑐(𝐴) = 1 − 𝑃𝑜𝑠(𝐴̅) = 1 − 1 = 0  

 

Ok friends with that I conclude this talk, so if we summarize what we have done.  

We have started with, 
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Basic definitions of fuzzy sets and fuzzy memberships.  

Then we have looked at basic set operations on fuzzy sets, and examined different properties of 

different fuzzy set operators. 
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Then we have seen fuzzy numbers  

Types of fuzzy numbers.  

How to carry out arithmetic operations on fuzzy numbers.  

How to order fuzzy numbers.  

How to approximate results of fuzzy arithmetic with triangular fuzzy numbers etcetera.  
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We have also examined  

different decompositions theorems and  

the very important concept of extension principle.  



Then we have studied fuzzy logic starting with propositional logic,  

we studied multivalued logic,  

different logical operators and  

inferencing from fuzzy logical statements. 
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In inference our focus has been on different types of logical statements that is  

conditional,  

unconditional,  

qualified,  

unqualified  

and also seen how to infer from them.  

Then we have given a very practical approach namely Mamdani scheme.  
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We have also studied Fuzzy's relations and finally the evidence theory or possibility theory.  

 

It was a long journey of 30 lectures. But I hope these 30 lectures have given you a very strong 

foundation of how to deal with uncertainty using fuzzy mathematics fuzzy logic etc.  

As I said in the very beginning that the concept of fuzzy came around the Year 1965. So over the 

last 50 years or so the theory has been extended and many new concepts have come. That I could 

not touch in the very introductory class namely say in,  
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Mathematics, people are talking about fuzzy complex numbers, fuzzy geometry. People also talk 

about inferencing fuzzy systems. There are many other methods of inferencing other than 



Mamdani in computer science people talk about fuzzy automata, more advanced type of fuzzy sets 

such as fuzzy set of type II, Intuitionistic fuzzy set, hesitant fuzzy set. 
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Also, in different learning or in other applications we can find use of fuzzy logic, such as fuzzy 

control, fuzzy data analysis, fuzzy clustering, fuzzy databases and queries etcetera.  
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Also people talk about fuzzy optimization, where constraints or resources are expresssed in a fuzzy 

manner.  

Like that there are plethora of developments in the fuzzy set theory it was not possible to complete 

all of them in a 30 lecture series. But again say that if you follow the thirty lectures you will have 



a very strong foundation of how to deal with the uncertainty using fuzzy mathematics, fuzzy logic 

etc.  

With that I conclude my series of lectures I wish you all the success in life. 

Thank you very much. 


