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Welcome students to the MOOCs is goes on Fuzzy Sets Arithmetic and Logic. This is  

lecture number 27. If you remember, in the last class we started Fuzzy Quantifiers and in today’s 

class, I shall continue with that.  
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We know that fuzzy quantifiers are of two types,  

one is a first kind that is number type  

and other is the second kind which is proportion type.  

And we were discussing first kind and we have looked at propositions such as: 

𝑝: There are 𝑄 𝑖’𝑠 in some set 𝐼 such that 𝑉(𝑖) is 𝐹 where, 𝐹 is a fuzzy set and 𝑄 is a fuzzy 

quantifier of first kind.   
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And the example that we studied was: 

There are about 10 students in this class with low attendance.  

In practice this variable or say, this statement may be more complicated.   

Say, for example, suppose we write 

𝑝: There are about 20 students in this class whose attendance is low but, performance is good.  

So, it is a more general version we have one fuzzy quantifier.  

We are looking at essentially two different fuzzy sets, which give attributes to the students.  

One is attendance is low and the other one is performance is good.  
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So, to obtain to the truth value of 𝑝; we can write 𝑝 as follows.   



Let me call it 𝑝′: 

There are about 20 low attendance and good performance student in the class. 

And therefore, again as before we need to find scalar cardinality of a set 𝐸.  
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Where, 𝐸 is the set of students with low attendance and good performance.   

Since, both are fuzzy sets we look at  

𝜇𝑙𝑜𝑤 𝑎𝑡𝑡𝑒𝑛𝑑𝑎𝑛𝑐𝑒(𝑥) and 𝜇𝑔𝑜𝑜𝑑 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 (𝑥) for all 𝑥 in the class.  
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Therefore,  



|𝐸| = Σ𝑥 (𝜇𝑙𝑜𝑤 𝑎𝑡𝑡𝑒𝑛𝑑𝑎𝑛𝑐𝑒(𝑥) ∧  𝜇𝑔𝑜𝑜𝑑 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 (𝑥)) 

= Σ𝑥 min (𝜇𝑙𝑜𝑤 𝑎𝑡𝑡𝑒𝑛𝑑𝑎𝑛𝑐𝑒(𝑥), 𝜇𝑔𝑜𝑜𝑑 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 (𝑥))  

Therefore, if we can define these two sets and we can compute the membership value for each 

student to both the classes by using this summation, we can get |𝐸|.  

And once |𝐸| is obtained 𝑇(𝑝) = 𝜇𝑎𝑏𝑜𝑢𝑡 20(|𝐸|), this part is very similar to our earlier example.  

So, I hope that you understood how to solve a problem of this type with that background.   
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Let us now focus on fuzzy quantifiers of 2nd kind.   

Example:  

About a quarter of the students of this class are B. Tech students.  

Given a class description, we can obtain truth value of the above statement 𝑝.  
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Suppose the class has 100 students of which 28 are B. Tech students.  

Therefore, for all 𝑥 ∈ class. We define a set 𝐵. 𝑇𝑒𝑐ℎ as follows: 

𝜇𝐵.𝑇𝑒𝑐ℎ = {
1   if 𝑥 is studying B. Tech 
0                           otherwise

 

Therefore, |𝐸| where 𝐸 ⇒ B. Tech student set = Σ𝑥=1
100 𝜇𝐵.𝑡𝑒𝑐ℎ (𝑥) = 28 

 (Refer Slide Time: 12:50)  

 

Now, suppose the fuzzy quantifier ‘𝑎𝑏𝑜𝑢𝑡 𝑎 𝑞𝑢𝑎𝑟𝑡𝑒𝑟’ is defined as this set that is,  

𝐴𝑏𝑜𝑢𝑡 𝑎 𝑞𝑢𝑎𝑟𝑡𝑒𝑟 = 𝑇𝐹𝑁[0.2   0.25    0.35]  
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Therefore, 𝑇(𝑝) = 𝜇𝑎𝑏𝑜𝑢𝑡 𝑎 𝑞𝑢𝑎𝑟𝑡𝑒𝑟 (
28

100
) = 𝜇𝑎𝑏𝑜𝑢𝑡 𝑎 𝑞𝑢𝑎𝑟𝑡𝑒𝑟(0.28) 

28

10
 is the proportion of student who are studying B. Tech. 

And by the definition that we have given  

𝜇𝑎𝑏𝑜𝑢𝑡 𝑎 𝑞𝑢𝑎𝑟𝑡𝑒𝑟(0.28) = 0.7 

Therefore, truth value of the above statement can be determined as 𝑇(𝑝) = 0.7   
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Let us consider slightly more difficult scenario. 

Suppose the proposition is  

𝑝: Almost all the young students of this class are performing well.  



And we want 𝑇(𝑝) given certain facts of the class and suppose we have the following fact.   
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Student Age 𝜇𝑌𝑜𝑢𝑛𝑔(𝑥) Marks 𝜇𝐺𝑜𝑜𝑑(𝑚𝑎𝑟𝑘𝑠) Min 

𝑥1 24  80   

𝑥2 22  85   

𝑥3 32  75   

𝑥4 25  68   

𝑥5 23  72   

𝑥6 22  90   

𝑥7 24  80   

𝑥8 28  72   

𝑥9 23  68   

𝑥10 30  90   

 

Now, to obtain  𝜇𝑌𝑜𝑢𝑛𝑔(𝑥) and 𝜇𝐺𝑜𝑜𝑑(𝑚𝑎𝑟𝑘𝑠), we have to define the fuzzy set 𝑦𝑜𝑢𝑛𝑔 and the 

fuzzy set 𝑔𝑜𝑜𝑑 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒. Suppose we define them as follows.   
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𝑌𝑜𝑢𝑛𝑔 is a trapezoidal fuzzy number 𝑇𝑟𝐹𝑁 [18  20  22   26] and 𝑔𝑜𝑜𝑑 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 is a half 

𝑇𝑟𝐹𝑁 [60    80   100   100]  

With these two fuzzy sets define like that, let us now fill in the above table.  

Student Age 𝜇𝑌𝑜𝑢𝑛𝑔(𝑥) Marks 𝜇𝐺𝑜𝑜𝑑(𝑚𝑎𝑟𝑘𝑠) Min 

𝑥1 24 1

2
 

80 1 1

2
 

𝑥2 22 1 85 1 1 

𝑥3 32 0 75 3

4
 

0 

𝑥4 25 1

4
 

68 0.4 1

4
 

𝑥5 23 3

4
 

72 0.6 0.6 

𝑥6 22 1 90 1 1 

𝑥7 24 1

2
 

80 1 1

2
 

𝑥8 28 0 72 0.6 0 

𝑥9 23 3

4
 

68 0.4 0.4 

𝑥10 30 0 90 1 0 

 



Therefore, now we need to look at the minimum because we are looking at both 𝑦𝑜𝑢𝑛𝑔 as well as 

𝑔𝑜𝑜𝑑 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒. Therefore, we look at the conjunction of this and therefore, by standard 

intersection or by standard fuzzy t-norm, we are using the minimum.  
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Therefore, |𝐸| =
1

2
+ 1 + 0 +

1

4
+ 0.6 + 1 +

1

2
+ 0 + 0.4 + 0 = 4.25 

Now, we need to obtain the proportion of young and good performing student of the class.   
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So, if we define |𝐸| = 𝑊 then  



𝑊 =
|𝑌𝑜𝑢𝑛𝑔 ∩  𝐺𝑜𝑜𝑑 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒|

|𝑌𝑜𝑢𝑛𝑔|
=

4.25

|𝑦𝑜𝑢𝑛𝑔|
=

4.25

4.75
=

17

19
= 0.895 

Therefore, given the fact of the class, the truth value of the statement that, almost the all young 

students of the class are performing good is 0.895.  
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Thus, for the fuzzy Quantifiers of second kind, we have the following canonical form.  

𝑝: 𝐴𝑚𝑜𝑛𝑔  𝑡ℎ𝑒 𝑣’𝑠 𝑖𝑛 𝑉 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐴1(𝑣) 𝑖𝑠 𝐹1 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑄 𝑣’𝑠 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐴2(𝑣) 𝑖𝑠 𝐹2.  

This is apparently complicated, but let us compare with the example just I have given.  

𝑉 is the set of students, 𝐴1(𝑣) is that attribute age, 𝐹1 is the fuzzy set young, 𝑄 is the quantifier 

almost all and 𝐴2(𝑣) is that tribute performance or marks and 𝐹2 is the fuzzy set good.   
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So, when we have such a canonical form, we convert it into a form like this: 

𝑝′: 𝑄 𝐸1’𝑠 𝑎𝑟𝑒 𝐸2’𝑠  

that is 𝑎𝑙𝑚𝑜𝑠𝑡 𝑎𝑙𝑙 𝑦𝑜𝑢𝑛𝑔 𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑠 𝑎𝑟𝑒 𝑔𝑜𝑜𝑑 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑖𝑛𝑔 𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑠.  

Therefore,  

𝐸1 = 𝑌𝑜𝑢𝑛𝑔(𝑎𝑔𝑒(𝑣)) 

𝐸2 = 𝐺𝑜𝑜𝑑(𝑚𝑎𝑟𝑘𝑠(𝑣)) 

And we conclude 𝑝′: 𝑊 𝑖𝑠 𝑄 
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Where 𝑊 is the measure of subsethood of 𝐸2 in 𝐸1. 



Graphically suppose, this is the total class this is 𝐸1 the set of students who are young and 𝐸2 is 

how many of them are good.  
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Here  

|𝐸1| = Σ𝑣𝜇𝑌𝑜𝑢𝑛𝑔(𝑎𝑔𝑒(𝑣)) 

|𝐸1 ∩ 𝐸2| = Σ𝑣 min (𝜇𝑌𝑜𝑢𝑛𝑔(𝑎𝑔𝑒(𝑣)), 𝜇𝐺𝑜𝑜𝑑(𝑚𝑎𝑟𝑘𝑠(𝑣)))  

Therefore, we can generalize as follows.  
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|𝐸1| = Σ𝑣𝜇𝐹1
(𝐴1(𝑣)) 



|𝐸1 ∩ 𝐸2| = Σ𝑣 min (𝜇𝐹1
(𝐴1(𝑣)), 𝜇𝐹2

(𝐴2(𝑣)))  

∴ 𝑊 =
|𝐸1 ∩ 𝐸2|

|𝐸1|
 

This is the ratio that one can use  to obtain  the truth value for 𝑝.  

Obviously, 0 ≤ 𝑊 ≤ 1 

 (Refer Slide Time: 35:24) 

 

Now let us look at inference from quantified propositions. 

We have seen that all quantified propositions can be written as 

𝑝: 𝑊 𝑖𝑠 𝑄 

where 𝑊 = |𝐸| for first kind that is number type of fuzzy sets or 𝑊 =
|𝐸1∩𝐸2|

|𝐸1|
 for second kind of 

quantifiers.  
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Now the purpose of inferencing is that, given n quantified propositions, what we can infer or what 

can be deduced from them.  

That is, if we have  

𝑝1: 𝑊1  𝑖𝑠 𝑄1 

𝑝2: 𝑊2  𝑖𝑠 𝑄2 

⋮                    

𝑝𝑛: 𝑊𝑛  𝑖𝑠 𝑄𝑛 

And our aim is to find a statement 𝑝: 𝑊 𝑖𝑠 𝑄 and we try to obtain it truth value.   

Here. Each 𝑄𝑖 is a quantifier and each 𝑊𝑖 is the cardinality of an appropriate fuzzy set.  
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Now, the generalized version of inference is that:  

If there exists functions 𝑓(𝑊1, 𝑊2 … 𝑊𝑛) ≤ 𝑊 ≤ 𝑔(𝑊1, 𝑊2 … 𝑊𝑛)  

Then one may conclude 𝑝: 𝑊 𝑖𝑠 𝑄  

if 𝑄 is at least 𝑓(𝑄1, … 𝑄𝑛) and at most 𝑔(𝑄1, … 𝑄𝑛). Therefore, if we could obtain such functions, 

then we can conclude 𝑊 𝑖𝑠 𝑄.   
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In practice we use a simpler version, which says that  

If there exists a function 𝑓 such that 𝑓(𝑊1, … 𝑊𝑛) = 𝑊 and 𝑓(𝑄1, … 𝑄𝑛) = 𝑄. Then we can infer 

that 𝑝: 𝑊 𝑖𝑠 𝑄  from the propositions 𝑝1, 𝑝2, . . . 𝑝𝑛.  
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For illustration, considered these two propositions:  

𝑝1: 𝑇ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑎𝑏𝑜𝑢𝑡 100 𝑑𝑎𝑦𝑠 𝑖𝑛 𝑎 𝑦𝑒𝑎𝑟 𝑤ℎ𝑒𝑛 𝑖𝑡 𝑟𝑎𝑖𝑛𝑠.  

So, this is a statement with a fuzzy quantifier of first kind 𝑎𝑏𝑜𝑢𝑡 100. 

𝑝2 ∶ 𝑂𝑛 𝑎𝑏𝑜𝑢𝑡 ℎ𝑎𝑙𝑓 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑎𝑖𝑛𝑦 𝑑𝑎𝑦𝑠 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 𝑗𝑎𝑚 

So, this is a fuzzy quantifier of the second kind. 

So, we want to infer 𝑝: 𝑇ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑄 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 𝑗𝑎𝑚 𝑑𝑎𝑦𝑠 𝑖𝑛 𝑎 𝑦𝑒𝑎𝑟.  

I think the idea is clear. We have some fuzzy quantifier related statement about on how many days 

there is rain and a proportional statement on how many days there is a traffic jam. So, we want to 

infer about on a how many days in a year there is a traffic jam. We want to have an idea of this 

fuzzy quantifier 𝑄.  
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So to generalize this we have 

𝑄1 = 𝐴𝑏𝑜𝑢𝑡 100   − from 𝑝1 

𝑄2 = 𝐴𝑏𝑜𝑢𝑡 ℎ𝑎𝑙𝑓   − from 𝑝2 

And let 𝐸 and 𝐹 be the set of days in a year when 𝐸 corresponds to rainy days and 𝐹 corresponds 

to traffic jam days.  
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Therefore, we have 𝑝1: 𝑊1  𝑖𝑠 𝑄1 where 𝑊1 = |𝐸|  

and 𝑝2: 𝑊2  𝑖𝑠 𝑄2 where, 𝑊2 is the proportion 
|𝐸∩𝐹|

|𝐸|
 



Assume that traffic jam causes only with rainy days. So, 
|𝐸∩𝐹|

|𝐸|
 gives us the proportion on how many 

of the rainy days there is going to be traffic jam. And 𝑊 is going to be the cardinality of 𝐹.  
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We can consider typically, we consider 𝑓(𝑎, 𝑏) = 𝑎𝑏 

If you remember, we have stated this that from the  given statements, these are the quantifiers, we 

are trying to get 𝐹  and 𝑊1, 𝑊2 … 𝑊𝑛 are the different fuzzy sets defined on the set of elements in 

our case the set of days.  

Therefore, 𝑓(𝑊1, 𝑊2) = 𝑊1𝑊2 = |𝐸|
|𝐸∩𝐹|

|𝐸|
= |𝐸 ∩ 𝐹| = 𝑊  

That is, this is the number of traffic jam days among the rainy days. So, what we do fuzzy 

multiplication.  
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Suppose, we have 

𝑄1 = 𝐴𝑏𝑜𝑢𝑡 100 ∶ 𝑇𝐹𝑁[90   100   110] 

𝑄2 = 𝐴𝑏𝑜𝑢𝑡 ℎ𝑎𝑙𝑓 ∶ 𝑇𝐹𝑁[0.4   0.5   0.6] 

 (Refer Slide Time: 50:29) 

 

To obtain 𝑄 we multiply the 𝑇𝐹𝑁[90   100   110] by the 𝑇𝐹𝑁[0.4   0.5   0.6].  

𝑄1 = 𝑛𝑒𝑎𝑟𝑙𝑦 100 which is a quantifier of first kind and 𝑄2 = 𝑎𝑏𝑜𝑢𝑡 ℎ𝑎𝑙𝑓 is of second kind.   
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Therefore,  0+𝑄 = [90 ∗ 0.4, 110 ∗ 0.6]  = [36, 66] 

 1𝑄 = [100 ∗ 0.5] = 50 

In general  

 𝛼𝑄1 = [90 + 10𝛼, 110 − 10𝛼] 

 𝛼𝑄2 = [0.4 + 0.1𝛼, 0.6 − 0.1𝛼] 
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Therefore,  

 𝛼(𝑄1 ∗ 𝑄2) = [36 + 4𝛼 + 9𝛼 + 𝛼2, 66 − 6𝛼 − 11𝛼 + 𝛼2 ]

= [𝛼2 + 13𝛼 + 36, 𝛼2 − 17𝛼 + 66] 



 

Therefore, if we plot it, it appears like a triangular fuzzy number, but we know that it is not. In 

fact, it is going to be quadratic equation. So, we can expect a shape like this. And, we have already 

studied that such type of shapes can be approximated by triangular fuzzy number provided the 

maximum gap is within a threshold. So like that we can estimate the value of 𝑄.  
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The concept of inferencing from fuzzy quantifiers can be further extended as follows.  One of them 

is called product syllogism that is, suppose we have proposition  

𝑝1: 𝑄1 𝐸′𝑠 𝑎𝑟𝑒 𝐹′𝑠 

𝑝2: 𝑄2 (𝐸′𝑠 𝑎𝑛𝑑 𝐹′𝑠)𝑎𝑟𝑒 𝐺′𝑠 

From that to want to conclude by a similar way is 𝑝: 𝑄1𝑄2 𝐸′𝑠 𝑎𝑟𝑒 𝐹′𝑠 𝑎𝑛𝑑 𝐺′𝑠 
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We want to infer about 𝐺 ∩ 𝐹 out of 𝐸. Therefore, we can write it as 

𝑝1: 𝑊1  𝑖𝑠 𝑄1 proportion 
|𝐸∩𝐹|

|𝐸|
 

𝑝2: 𝑊2  𝑖𝑠 𝑄2 proportion 
|𝐸∩𝐹∩𝐺|

|𝐸∩𝐹|
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Therefore, we infer  

𝑊 = 𝑊1𝑊2 =
|𝐸 ∩ 𝐹|

|𝐸|
×

|𝐸 ∩ 𝐹 ∩ 𝐺|

|𝐸 ∩ 𝐹|
=

|𝐸 ∩ 𝐹 ∩ 𝐺|

|𝐸|
 

. That is, it gives the proportion type quantifier for 𝑄 𝐸’𝑠 𝑎𝑟𝑒 𝐹’𝑠 𝑎𝑛𝑑 𝐺’𝑠.  
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The other type of inferencing is called consequent conjunction syllogism where  

𝑝1: 𝑄1 𝐸′𝑠 𝑎𝑟𝑒 𝐹′𝑠 

𝑝2: 𝑄2 𝐸′𝑠 𝑎𝑟𝑒 𝐺′𝑠 

 and we want to infer  

𝑝: 𝑄 𝐸’𝑠 𝑎𝑟𝑒 𝐹’𝑠  𝑎𝑛𝑑 𝐺’𝑠.  
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We want to infer about how many of the 𝐸’𝑠 𝑎𝑟𝑒 𝐹’𝑠 𝑎𝑛𝑑 𝐺’𝑠.  
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So, here 𝑄 is given by  

[≥ 𝑀𝐴𝑋(0, 𝑄1 + 𝑄2 − 1)] ∩ [≤ 𝑀𝐼𝑁(𝑄1, 𝑄2)]  

where we have defined 𝑀𝐼𝑁 and 𝑀𝐴𝑋 earlier.  
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For your recollection,  

𝜇𝑀𝐼𝑁(𝐴,𝐵)(𝑧) = sup
z=min(x,y)

min(𝜇𝐴(𝑥), 𝜇𝐵(𝑦)) 

𝜇𝑀𝐴𝑋(𝐴,𝐵)(𝑧) = sup
z=max(x,y)

min(𝜇𝐴(𝑥), 𝜇𝐵(𝑦)) 



Like that, when we are given different proportion type quantifiers we can infer about some other 

statement or other proposition 𝑝, when we are given 𝑝1, 𝑝2 … 𝑝𝑛, that is 𝑛 different quantifier 

propositions that are quantifier or the proportion. 

Okay students, with that I stop fuzzy quantifier. In the next class, I shall look into very interesting 

type of fuzzy inference system, which is called Mamdani scheme for inferencing given a set of 

propositions or fuzzy propositions and an input variable. Till then thank you.   


