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So, next I am going to talk about another case another example. So, in particular I have this
famous equation given by Schrodinger. So, this is another wave equation, which tells us notice
that this is now a complex wave because of the presence of this i.

Schrodinger Equation:

i~ψt =

[
V (x)− ~2

2m
∇2

]
ψ

where, ψ=Wave function, V (x) = Potential and ~2
2m
∇2=Kinetic Energy

So, typically I have this Schrodinger equation which measures the total energy of a particle
given by the sum of this potential energy. so, just to give a brief overview of this equation. So,
suppose then I have this constant h with a cross it is also known as the Planck’s constant and
this has a known value. So, if I have; if I choose my potential v to be a constant right. So, if
my potential v is a constant, then I can find the solution of this example of this wave function
of the type of plane waves. So, what do I mean by that? If I take my v to be constant I can
show that my solution to this Schrodinger equation is of this form.

Now, let us look at. So, let us look at the solution to this equation with v constant. So, I
am going to assume that v is constant. So, this is going to be assumed and I am going to solve
this equation, ok. So, if I were to apply my if I were to choose solutions of this form. So, seek
solutions of this form and for that type of solutions I would like to know what is this A, this
amplitude A.

So, if I plug this; if I plug this solution to this equation; this Schrodinger equation with v
constant I get the following expression:

ψ(t, x) = A exp[i(kx− ωt)]



Solution:

i~(−iω) = V − ~2

2m
(ik)2

So, ∇2 square it is a problem in one dimension. So, ∇ each derivative of x is going to pull out
one i k. So, I get i k square. So, if I were to simplify; I get this is equal to,

~ω = V +
~2k2

2m

Notice that this is the relation between the relation between omega and k. So, if I were to choose
my solution of this form, ω and k must satisfy this following relation if this function is to be
a solution to this equation. Now in particular this relation or relation to any PDEs in general
are also called as the dispersion relation. So, when I talk about the PDEs and I transform the
PDEs into this Fourier plane, then the corresponding PDE that I or the corresponding equation
that I get in the transformed Fourier plane, Fourier or Fourier Laplace plane is the so called
dispersion relation.

So, this is identically equal to the PDE in the physical plane or the x-t plane. So, this is
quite common; it is quite common by scientist throughout the world to figure out the dispersion
relation and compare it with the solution to the PDE and how accurate is the solution.

Now, just to give you a bit of bit more highlight. We see that; we see that for the dispersion
relation let me write down:

~w = v +
(~k)2

2m
∴ Dispersim Relation

Now, there are some important quantities that can be found out of this dispersion relation.
One of them being the so called group velocity right and the other one that is commonly used
is the so called phase velocity. So, what is group velocity? Well, mathematically group velocity
is given by the expression:

∂w

∂k
=

~k
m

2



So, I need to divide throughout by h cut here and differentiate omega with respect to k. So, in
this case if I were to find the group velocity, I get that this is equal to:

w

k
=

v

~k
+

~k
2m

Notice that the group velocity and the phase velocity are two separate quantities. Now, let me
just give you a little bit of highlight as to what are these quantities. So, suppose I am talking
about a wave. Let us say I have a wave which is moving with time. So, I have a wave, a wave.
Let us say

ψ = A sin(at) sin(bt) where,a 6= b

So, notice that this wave has two frequencies. Well, one will be say let say a is not equal to b.
So, in this scenario there will be two frequencies with which this wave is propagating with time
or changing with time. One could be where a is bigger, in that case we have the slow wave and
when b being smaller we could have the fast wave.

So, if I were to plot this expression over this on this graph(shown in the slide) I am going to
get the following curve. So, let us say this is my envelope. So, this is my slow wave this is my
slow the slow frequency evolution and within that slow frequency I will get the fast evolution
of the wave; so, the speed of this. So, this is the envelope. So, the envelope speed, the envelope
speed is also known as the group velocity cg.

So, I term this as cg, the group velocity and the velocity of this 1 wave packet is also called as
the phase velocity. So, I denote this by c p. So, the velocity of 1 wave packet or 1 particle within
that wave is the phase velocity and the velocity of the entire envelope of these waves is the
group velocity, ok. Moving on to the solution, moving on to the solution I have the following.
So, I am solving 1-D Schrodinger equation just to recap. I am solving 1-D Schrodinger equation
for free particles, 1-D Schrodinger equation for free particles that is v is identically equal to 0.
So, what I have is that, I have the following equation.

Solution:

i~ψNt = − ~2

2m
ψxx

−∞ < x <∞
t > 0

ψ(x, 0) = ψ0(x) · −∞ < x <∞
ψ(x, t)

(x)→∞−→ 0

So, to solve this, if I were to apply the Fourier transform, so apply Fourier transform with
respect to the variable x. So, I apply Fourier transform with respect to the variable x.
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So, I get the following expression.

i~ψ̂t =
k2

2m
ψ̂ where, ψ̂ = F.T (ψ)

Now, after applying the boundary conditions,I get the solutions ψ̂ of the following form:

ψ̂(k, t) = ψ̂0(k)e−iαk
2t α =

~
2m

Notice that as my t goes to infinity, well, at t equal to 0, the solution reduces to the solution

given by the initial condition and as t goes to infinity; we see that the solution decays. So, this
satisfies all the initial and the boundary conditions. So, then my solution:

ψ(x, t) = (F.T )−1(ψ̂) =
1√
2π

∫ ∞
−∞

ψ̂0(k) exp[ik(x− αt)]dk

=
1

2π

∫ ∞
−∞

e−ikyψ(y, 0)dy

[∫ ∞
−∞

eik[x−αkt]dk

]
Now, I have two integral, one with respect to y the other with respect to k. So, let us now
combine these exponential factors and rewrite our expressions. So, this becomes:

=
1

2π

∫ ∞
−∞

ψ(y, 0)dy

∫ ∞
−∞

eik[x−y−αkt]dk

So, I am going to evaluate this second integral by completing the squares. So, I am going to
complete squares here.

eik[x−y−αkt] = exp

[
−ikt

[
k2 − 2k(x− y)

2αt
+

(x− y)2

(2αt)2
− (x− y)2

(2αt)2

]]
.

So, after completing the square I am going to see that,
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= exp

[
−iαt

(
k − x− y

2αt

)2
]
. exp

[
i
(x− y)

4αt

2
]2

So, this expression is going to be substituted in this integral and after substituting these values.

ψ(x, t) =
1

2π

∫ ∞
−∞

e
i(x−y)2

4αt ψ (y, 0) dy

∫ ∞
−∞

e−iαtξ
2

dξ where, ξ = k − x− y
2αt

And finally, after evaluating this integral, I am going to get the following expression that this
is:

=
1

2π

√
π

2αt
(1− i)

∫ ∞
−∞

ei(x−y)
2

4αt
ψ(y, 0)dy

that is the solution to this problem, which is left in the form of one integral depending on
whatever this function ψ at 0 will be ok.

Then, I am going to talk about another short example that is on the case scenario of
linearized shallow water, linearized shallow water equation. So, in specially found in rotating
ocean currents, rotating ocean currents. Now, it has been found that if we were to track the
velocity of the water waves, the velocity of the water waves on the surface of the ocean and
treating the ocean; the ocean floor as a two dimensional surface with the height separately
treated as a variable. Then, I am able to write the equation for these wave motion in the
linearized format as follows.

So, I have the following equations:

(I)


ut − fv = −gηx
vt + fu = 0
ηt + hux = 0


where, f = 2Ω sin θ : constant = coriolis parameter

η : free surface height. (u, v) : velocities

So, then, I need also some initial conditions, some initial conditions which are given by

u(x, 0) = 0 = v(x, 0); η(x, 0) = η0H(a− |x|)
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Now, if we were; let us say that the set of equations is 1. So, I am going to apply Fourier
transform to 1. So, applying Fourier transform to 1, I get the following new set of equations.

Apply Fourier Transform to (1),I get:

(i) du
dt
− fv = −gikE

(ii) dV
dt

+ fu = 0
(ii) dE

dt
= −ihkU.

where,
u = F.T(u)
V = F.T(v)
E = F.T(η)

So, if I were to combine, if I were to combine these three ODEs. Notice that, this is now an
ODE and the initial conditions of the ODEs are:

u(k, 0) = V (k, 0) = 0

E(k, 0) =
√

2
π
η0

sin(ak)
k

we take the Fourier transform of the initial conditions for E and that is what we get; so,
combining this into a single ODE. So, notice that this set of three ODEs I can combine.
Specifically, I can take the derivative of E, which will be as a function of the derivative of u.
So, we need to take further another derivative of E to give me dV/dt and so that is how we
eliminate and come up with a single equation for E, which is given by the following;

d3E

dt3
+ ω2dE

dt
= 0

where,
ω2 = f 2 + (ck)2

= f 2 + (gh)2k2

E(k, t) = A+B cos(kt) + C sin(kt)→ (3)

You can check. We can check that this is indeed the solution to this ODE, which satisfies.
Now, we must make sure that this solution satisfies these initial conditions. So, when; so, in
particular if I take the second derivative of E with respect to t, I get that this is equal to:

d2E

dt2
= −ihkdu

dt
= −ihk (fv − igkE)
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= −c2k2E(k, 0)

= −c2k2
√

2

π
η0 sin(αk)

So, if I were to differentiate 3 with respect to t, I get that:

d2E

dt2
= A+B =

√
2

π
η0

sin(ak)

k
for,t = 0

So, that is one relation between A and B. Then, what I have is another relation is that

dE

dt
= −ikhu = 0 = c from equation (3)

So, this is evaluated at t equal to 0. I get that this is equal to 0 because u is 0 and I get that
again finding dE/dt from my expression 3; I get that this is equal to C. So, after finding A, B,
C in this fashion, I get that my E my expression:

E(k, t) =

√
2

π
η0

sin (αk)

k

[
f 2 + c2k2 cos kt

f 2 + c2k2

]
→ (5)

So then η which will be the Fourier inverse of this expression for E will be given by the inverse
transform. So, we take the inverse transform:

η = (F.T )−1(E(k, t)) =
1√
2π

∫ ∞
−∞

E(k, t)eikxdk

I use this expression 5, I get my answer and the answer will be only in terms of; so, use 5. So,
use this expression 5 to come up to this answer for η. Now, similarly I can find, similarly I can
find expression for u for v and so on; so and so on.
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Similary u(x, t), v(x, t) : and so on.

Well, these are the only two variables which remain.
So, you can see that this particular example shows us how to calculate the solution to this

rotating ocean currents in which we have linearized the coefficients of the equation using our
Fourier transform. Of course, if we know our initial condition we can exactly solve all these
integral to get an exact analytical expressions for our answer. So, in the next lecture I am going
to talk about again another application of Fourier transforms and further from moving from
there onwards I am going to talk about Laplace transform. I will introduce Laplace transform
and then I will talk about some properties of Laplace transform and later on we will look at
some interesting applications of Laplace transform. Thank you very much.
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