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So now, let us look at another example.

(Refer Slide Time: 00:18).
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So, let me show you another example of Shannon wavelets. Let me just describe what are these
wavelets, very widely used in signal processing. So, Shannon wavelets are wavelets the function ψ whose
Fourier transform satisfies the following condition. So, I have

ψ̂(w) = χI(w); I =
[
− 2π, π

]
∪
[
π, 2π

]
So, if I were to plot, my Fourier transform of the Shannon wavelet, I see that the Fourier transform

of the Shannon wavelet is from π to 2π and it is 1 and from −π to −2π this also is 1 and otherwise it is
0. So, that is the Fourier transform of the Shannon wavelet which means that my Shannon wavelet

ψ(t) = F−1
[
ψ̂(w)

]
=

1

2π

∫ ∞
−∞

eiwtψ̂(w)dw

=
1

2π

∫ −π
−2π

eiwtdw +

∫ 2π

π

eiwtdw

=
1

2π

[
sin(2πt)− sin(πt)

]
=

sin(πt/2) sin(3πt/2)

πt/2

So, after simplification, I see that the Shannon wavelet has the following form. So, if I were to plot
these Shannon wavelets i.e. if I were to plot ψ(t) versus t if I were to plot this function this function is
an even function of t. Notice that the function is as given in figure. So, then all I have to see is whether
this whether the Shannon wavelet and if I were to describe the discrete version of this Shannon wavelet,
are they orthonormal or not. So, that is this question that I have to answer.

(Refer Slide Time: 04:30)

So, let us look at at ψ(t). So, notice that ψ(t) is orthonormal to its integer translates. So, orthonormal
to its integer translates. So, what I mean to say is that
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< ψ(t), ψ(t− n) >=
1

2π
< ψ̂, einwψ̂ >

=
1

2π

∫ ∞
−∞

ψ̂e−inwψ̂dw

=
1

2π

∫ ∞
−∞
|ψ̂|2e−inwdw

=
1

2π

∫ 2π

−2π
e−inwdw (beacuse |ψ̂| = 1 on I)

= δ0,n

Hence my result follows I have shown here is that ψ is orthonormal to its integer translates. So, then
let us look at the corresponding discrete Shannon wavelet basis. So, I am going to again describe my
discrete Shannon wavelet basis

ψm,n(t) = 2−m/2
sin

[
π
2 (2−mt− n)

]
cos

[
3π
2 (2−mt− n)

]
π
2 (2−mt− n)

Here, a0 = 1/2 and b0 = 1 and ψm,n(t) defined in the interval
[
− 2−m+1π − n,−2−mπ − n

]
(Refer Slide Time: 09:40)

The other interval is ∪
[
2−mπ− n, 2−m+1π− n

]
. So, then I have to show that this definition of ψm,n

forms and orthonormal basis. So, if that is the case, then the definition makes sense for the Shannon
wavelet. So then let us look at the Fourier transform of ψ̂m,n

ψ̂m,n =

{
2m/2e−iwn2

m

; 2−mπ < |w| < 2−m+1π

0; otherwise

So, so I leave this as an exercise to the students to find that indeed the Fourier transform is the
given function. So, this has already been done and I have already shown the result here. Further check
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the students are asked to check the following result that the < ψ̂m,n; ψ̂k,l >= 0. So, that can be easily
done by taking the appropriate inner product of these Fourier transform of this discrete version of the
functions.

< ψ̂m,n; ψ̂k,l >= 0 =< ψm,n;ψk,l > (Parseval’s Rel.)

For m=k;

< ψ̂m,n; ψ̂k,l >=
1

2π
< ψ̂m,n; ψ̂m,l >

=
1

2π

∫ ∞
−∞

2−me−iw2−m(n−l)dw

Notice that if I were to simplify this further, let me assume the following change of variables. So,
assume my σ = 2−mw. Then I have

=
1

2π

∫ ∞
−∞

2−me−iσ(n−l)dσ = δn,l

So, what I have shown here is that if m is equal to k then of course, these wavelets are orthonormal.
So, I have shown here is that my psi m n my wavelets are orthonormal. So, for m not equal to k, students
can check that the inner product will come out to be 0. So, these wavelets are orthonormal and hence
the description of these discrete form of these wavelets make sense.

So, then in the next case, in this next example I am going to now introduce as another wavelet namely
the Daubechies wavelets. Now Daubechies wavelets we will see that the special property of Daubechies
wavelets is that we can describe how smooth or what sort of smoothness is the wavelet that we prescribe.
So, the smoothness of the wavelet can be prescribed in this particular form of the wavelets. So, let us
look at what is this construction.

(Refer Slide Time: 16:41)

Now, before I move ahead, I would like to highlight to the students that for a very detailed description
of Daubechies wavelets the students should refer the following text. Wavelets and Applications by
Lokhnath Debnath, this was published in by Birkhauser in 2002. So, some of these ideas are taken from
this references. So, let me just highlight now the Daubechies wavelet . So, first of all Daubechies wavelets
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are a family of discrete discrete orthonormal wavelets characterized by maximal vanishing moments. So,
we can prescribe how many moments the wavelets should be set equal to 0 and that will describe how
smooth that particular wavelet is. So, that is characterized by maximum vanishing moments in a given
subdomain. So, maximum vanishing moments in a given subdomain of the wavelets ok.

I call these subdomains as support. So, for a given support if I can get maximal vanishing moments,
then those particular class of wavelets are known as the debauchies wavelets. So, let us consider the
construction of these wavelets first. So, let us consider a square integrable function f. So, now, I am going
to represent this function f. So, the idea is as follows. From this function f, which is say any arbitrary
square integrable function, I am going to represent this function in terms of certain scaling functions.
Now we are going to look at some properties of the scaling functions namely, I am going to generate a
particular function known as the generating function which will describe these wavelets. So, now let us
consider these square integrable functions. So, these functions can be represented let us say that they
are represented by the scaling function φ(x) by the following form:

f(x) =
√

2

∞∑
n=−∞

Cn φ(2x− n) =

∞∑
n=−∞

Cn φ1,n

where, Cn =< f, φ1,n >

Let me call this this definition of f by I. I am going to describe these scaling functions and I will use
these definitions of scaling functions. So, that they are going to describe my Daubechies wavelets. So,
let us call this we see that this these are my discrete form of these wavelets with a0 = b0 = 1. So, I can
write rewrite this as above.

where, φn(x) satisfy the dilation equation

φ(x) =
√

2

∞∑
n=−∞

Cn φ(2x− n)

where, Cn =< φ, φ1,n > and
∑
|Cn|2 <∞

Notice the idea is the same as what we have followed in the development of my discrete Haar wavelets
where we had described my dilation function and using the dilation function I described the wavelet and
hence the discrete wavelets. Let me call this dilation equation by II.

(Refer Slide Time: 23:26)
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So, let us take let me now start taking the discrete Fourier transform of I.

f̂(w) =
1√
2

∞∑
n=−∞

Cne
−inw/2 φ̂(w/2)

= m̂(w/2) φ̂(w/2)

where the associated generating function is:

m̂(w) =
1√
2

∞∑
n=−∞

Cne
−inw

I am going to call this as III. Now, students asked again to refer to the texts which I have listed
by Lokanath Debnath. Now mainly that there are certain properties of this associated generating func-
tions again listed in this text. So, let me just highlight some of the properties that are satisfied by this
associated generating function. So, I see that m̂(w) is a trigonometric polynomial. It is a trigonometric
polynomial if I plug w = 0 and use the definitions of Cn described earlier m̂(0) is 1 and I also see that
m̂(π) is 0. Further I see that |m̂(w)|2 + |m̂(w + π)|2 is equal to 1. Again all these relations are proved
in detail in this particular text. So, I am going to use some of these results to give the construction of
this particular Daubechies wavelet.

So, then let us continue looking at this expression III. We want to construct the Daubechies wavelet
and to do that we want that ψ̂(w) is (n-1) times continuously differentiable. If now, this is the requirement
that we want so that we are able to construct the Daubechies wavelet of the required vanishing moments.
So, let us say there are n minus 1 vanishing moments and if that is the case we want that this psi hat
of omega must satisfy the following moment must satisfy the following moment equation. It satisfies the
moment equation given by psi hat k of 0 is 0. So, let us say, for k equal 0, 1, 2 to n minus 1 the derivative
of this this wavelet at 0 is 0. And now so, if that is the case what we want is.
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