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So, let me just talk about the case which is the Stokes flow. I am given that f is an oscillatory force,
so if I am given that the boundary condition is an oscillatory boundary condition. So, this is the case of
oscillating plate. So, if I plug f = eiωt I get:

u(z, t) =

(
2

π
νu

)
eiωt

∫ ∞
0

k sin(kz)dz

∫ t

0

e−iωττα−1Eα,α(−νk2τα)dτ

So this integral can be left here. Now there are some other special cases I can see. In particular let me
look at a case where α = 1. So, that is the classical Stokes flow. If I were to look at this case I plug
α = 1 in my expression, I see that the Leffler expansion is going to reduce to a pure exponential and I
see that the solution in this case looks as follows:

u(z, t) =

(
2

π
νu

)∫ ∞
0

(1− e−νtk
2

)
k sin(kz)

iω + νk2

So, further evaluation is left to the students as an exercise. So, please try to evaluate this integral
further by using integration by parts, this equation can be further solved. So, then the next steps I leave
it as an exercise.

Then I can talk another set of two cases. Let me talk about a case which is the Rayleigh flow that
is when f is given to be 1 or ω is 0. So, let me call the solution from previous lecture as my expression
number V . So, if I plug ω = 0 or f = 1 in in in my expression V, I get the Rayleigh?s flow. So, in
Rayleigh?s flow the solution is:
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u(z, t) =

(
2

π
νu

)∫ ∞
0

k sin(kz)dz

∫ t

0

τα−1Eα,α(−νk2τα)dτ

So, further again, further evaluation of the expression needs a bit more knowledge about how to evaluate
this interior integral, and it is left at this point. So this particular case is the Rayleigh?s flow, where the
plate is held stationary, so Rayleigh flow. The fourth case that we can look at is the classical Rayleigh?s
flow. So, case when f = 1 and α = 1. So, this is the classical Rayleigh?s flow and I need to plug f = 1
and α = 1 and I get back my classical Rayleigh solution as follows:

u = U erfc

[
z

2
√
νt

]
So, these were some of the cases for Rayleigh?s and Stokes flow that were discussed in this example. So,
in my next example I am going to look at a wave equation and then followed by I am going to look at
some Schrodinger equation and in fact, I am going to show you an example where I see a most general
fractional PDE.
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So, let us start with the wave equation case. So, in this example we will solve the fractional axis
symmetric wave diffusion equation. So, the equation is as follows:

∂αu

∂tα
= a

[
∂2u

∂r2
+

1

r

∂u

∂r

]
; 0 < r <∞, t > 0

I am going to call this PDE by I and then let me just highlight the fact that this particular equation
can be broken down into two separate types of equations, namely if I were to look at the case where
I take my a = κ that is the diffusivity, then I am talking about and further 0 < α < 1, I am talking
about the diffusion equation. So, that is the case of diffusion. Furthur if I choose my α = c2, where
c is the wave speed and I choose my α like 1 < α < 2, I have the so called wave equation. So, notice
that if I choose my α to be integral integer values in both these cases, we see that this is the diffusion
and the wave equation and we have seen in our discussion on Hankel transforms that for axis symmetric
problems the best way to solve these problems are via Bessel function. So, let us look at the solution to
this problem. Before that let me also provide you with the initial condition.
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u(r, 0) = f(r); 0 < r <∞

Let me call this initial condition by II. So, then as I said for axis symmetric problem let us apply the
0th order Hankel transform. Well, the boundary condition is trivial the solution needs to be bounded.
So, if I were to apply the 0th order Hankel transform and that is transformed with respect to the variable
r and Laplace transform with respect to my variable t, I get the joint Hankel for Laplace transform as
follows:

¯̃u(k, s) =
sα−1f̃(k)

sα + κk2

Here I have directly applied my initial condition. Here we see that the right-hand side is the Laplacian.
So, applying the Hankel transform will bring in k2 and we are solving the heat equation hence this
diffusivity constant and then the next step is to invert this expression.
Let me call this as expression III and I have used the following application of Laplace transform:

L
[
Dαu

]
= sαū(s)− sα−1f(0)

So, then let us apply the inverse Hankel and Laplace transform to transform to my expression given
by III, I get to this following point. I see that my solution is as follows:

u(r, t) =

∫ r

0

rJ0(kr)f̃(k)Eα,1(−κk2tα)dk

So, that brings in the solution. So, the moment we are able to solve this integral that gives us the
solution to this axis symmetric diffusion equation. So, this is the point where we stop finding the further
answer to this expression. So far I have shown you case I here. So, let me call this diffusion equation as
my case ‘a’ and let me call this wave equation as my case ‘b’. So, far what I have done is I have shown
this is for case ‘a’ here. This is for diffusion equation. So, for case ‘b’, I need to look at the case where
1 < α < 2, which means I will have two initial conditions for the axis symmetric wave equation.
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For case ‘b’ let me say that my initial conditions are as follows:

u(r, 0) = f(r)

ut(r, 0) = g(r); 0 < r <∞

Then my transformed variable ¯̃u is as follows:

¯̃u(k, s) =
sα−1f̃(k)

sα + (ck)2
+

sα−2g̃(k)

sα + (ck)2

So, then then if I were to apply joint inverse transform right away. Then,

u(r, t) =

∫ ∞
0

kJ0(kr)f̃(k)Eα,1
[
− (ck)2tα

]
dk +

∫ ∞
0

kJ0(u, r)g̃(k)tEα,2
[
− (ck)2tα

]
dk

Then the further solution depends on the functional form of f and g depends on f̃ and g̃. So, this
expression can be further solved based on the functional form of f and g, which is left at this point.

So, next I am going to give you and show you another example of fractional PDE in quantum
mechanics. So, that is the fractional Schrodinger equation. So, what I have is the equation to be solved:

i~
∂αψ

∂tα
=

~2

2m

∂2ψ

∂x2
; −∞ < x <∞; t > 0

Let me call this as Iand I see that the initial and boundary condition is :

ψ(x, 0) = ψ0(x); 0 < α ≤ 1

ψ(x, t) −→ 0 as |x| → ∞

Let me call these initial and boundary condition as II. So, if α = 1, I get the regular Schrodinger
equation. So, I am going to use Fourier transform in space and Laplace transform in time. So, let me
just jointly use Fourier Laplace.
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So, to find the solution in the transformed plane let us apply joint Fourier Laplace transform, we get:

¯̃
ψ(k, s) =

sα−1ψ̃0(k)

sα + ak2
, where, a =

~
2m

So, well before I move ahead, I just want to highlight that so far we have done so many examples involv-
ing fractional ODEs and PDEs that I believe that students are able to simplify and come to this point
of the expression by applying joint Fourier and Laplace transform.

So, some of the steps here come applying joint Fourier Laplace transform and coming to this point
has been skipped based on the fact that the students can see those steps in some of my previous example.
So, right away I write the solution in the transformed plane and then the next step is to apply the inverse
transform of the solution. So, let us apply both inverse Fourier and inverse Laplace simultaneously. So,
when I do that I get that my wave function in my physical plane is as follows:

ψ(x, t) =
1√
2π

∫ ∞
0

eikxψ̃0(k)Eα,1(−ak2tα)dk

=

∫ ∞
−∞

G(x− ζ, t)ψ0(ζ)dζ

So, this is my solution in terms of convolution, where my Green?s function is as follows:

G(x, t) =
1

2π

∫ ∞
−∞

eikxEα,1(−ak2tα)dk

So, then there is one more step that can be done to come to a slightly more simplified version of the
solution. In particular I can look at the case where α = 1. Then,

G(x, t) =
1

2π

∫ ∞
−∞

eikxE1,1(−ak2tα)dk

=
1

2π

∫ ∞
−∞

eikx−ak
2tdk

So, I can write away find this particular integral and I get that my Green?s function is as follows:

G(x, t) =
1√

4πat
exp

[
−x2

4at

]
So, those are my Green?s function for the case when I am working for the classical Schrodinger

equation and then that can be plugged back into my convolution integral. So that completes my discussion
on the Schrodinger equation here.
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