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So, the second case I am going to talk about is the non homogeneous fractional wave equation. So,
the non homogeneous fractional wave equation given by the following PDE:

o 0

v c@:q(x,t); r€R,t>0

I am also given the following initial conditions:

u(z,0) = f(x)
Ut(.’E,O) = g(.’ﬂ);
¢ = constant, 1<a<2

So, which means that if it is equal to 2 I get back my classical wave equation and that solution has
already been discussed. So let us now call this as my I. So, if I were to apply joint Fourier Laplace
transform, I get to see the following solution:
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So, then let us apply start to apply the inverse transform. So, if I were to do that I am going to get
solution in the Fourier space and the physical time. So, solution in the Fourier space and physical time
is given by:
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u(k,t) = f(h) L | —— L | —— L —
ik, t) = f(k) [s”‘—i—ckz} +9 [s‘l—i—ckz} + [sa+ck2]
So, I need to evaluate these three Laplace transform and I can see that I can evaluate the first two

Laplace transform using Mittag Leffler expansions.
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So, the solution in the Fourier transform and physical time space is:
t
i(k,t) = f(k)En1(—c2E*t™) + (k) [Ea72(—02k2t0‘)]t+/ Gkt — T) T By o (— 2K tY)dT
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So, if T were to start applying the inverse Fourier transform the first two inverse transforms are quite
straightforward in application. I see that my solution is:
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So, I have three integrals to evaluate note that now from here onwards if I were to evaluate this I need to
know the specific form of f, g and ¢, and once we know the specific form I can find the Fourier transform
plug it into the integral and evaluate this inverse transform.

If we talk about a special case, the special case is when « = 2, then the regular wave equation is :

E2,1(—C2k2ta) = cosh(ickt) = cos(ckt)
tsinh(ickt)  sin(ckt)

Boa(~c'kt?) = ickt Tk

So, , now, substituting both these expansion for a = 2, I get that my solution is:
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Let me call this as I because this is a particular case.
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So, then note that in the first case if I were to replace my cos(kct) by (et + e~*¢t) /2 and then we
get,
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So, this is nothing but the well known De Alembert?s solution for the wave equation that we had
found earlier for the regular wave equation. So, with this example I conclude our discussion on the
fractional ODE?s; however, I continue my discussion on my fractional PDE?s namely we will see some
special PDE?s in arising in fluids in signal processing and in quantum mechanics in my next lecture.



