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So, the second case I am going to talk about is the non homogeneous fractional wave equation. So,
the non homogeneous fractional wave equation given by the following PDE:

∂αu

∂tα
− c2 ∂

2u

∂x2
= q(x, t); x ∈ R, t ≥ 0

I am also given the following initial conditions:

u(x, 0) = f(x)

ut(x, 0) = g(x);

c = constant, 1 < α ≤ 2

So, which means that if it is equal to 2 I get back my classical wave equation and that solution has
already been discussed. So let us now call this as my I. So, if I were to apply joint Fourier Laplace
transform, I get to see the following solution:

¯̃u(k, s) =
f̃(k)sα−1

sα + ck2
+
g̃(k)sα−2

sα + ck2
+

¯̃g(k, s)

sα + ck2

So, then let us apply start to apply the inverse transform. So, if I were to do that I am going to get
solution in the Fourier space and the physical time. So, solution in the Fourier space and physical time
is given by:
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ũ(k, t) = f̃(k)L −1
[

sα−1

sα + ck2

]
+ g̃L −1

[
sα−2

sα + ck2

]
+ L −1

[ ¯̃g

sα + ck2

]
So, I need to evaluate these three Laplace transform and I can see that I can evaluate the first two
Laplace transform using Mittag Leffler expansions.
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So, the solution in the Fourier transform and physical time space is:

ũ(k, t) = f̃(k)Eα,1(−c2k2tα) + g̃(k)
[
Eα,2(−c2k2tα)

]
t+

∫ t

0

q̃(k, t− τ)τα−1Eα,α(−c2k2tα)dτ

So, if I were to start applying the inverse Fourier transform the first two inverse transforms are quite
straightforward in application. I see that my solution is:

u(x, t) =
1√
2π

∫ ∞
−∞

f̃(k)Eα,1(−c2k2tα)eikxdk +
1√
2π

∫ ∞
−∞

tg̃(k)Eα,2(−c2k2tα)eikxdk

+
1√
2π

∫ t

0

τα−1dτ

∫ ∞
−∞

q̃(k, t− τ)Eα,α(−c2k2tα)eikxdk

So, I have three integrals to evaluate note that now from here onwards if I were to evaluate this I need to
know the specific form of f, g and q, and once we know the specific form I can find the Fourier transform
plug it into the integral and evaluate this inverse transform.

If we talk about a special case, the special case is when α = 2, then the regular wave equation is :

E2,1(−c2k2tα) = cosh(ickt) = cos(ckt)

E2,2(−c2k2tα) =
t sinh(ickt)

ickt
=

sin(ckt)

ck

So, , now, substituting both these expansion for α = 2, I get that my solution is:

u(x, t) =
1√
2π

∫ ∞
−∞

f̃(k) cos(kct)eikxdk +
1√
2π

∫ ∞
−∞

g̃(k)
sin(kct)

kc
eikxdk

+
1√
2π

1

c

∫ t

−∞
dτ

∫ ∞
−∞

q̃(k, τ)
sin(kc(t− τ))

k
eikxdk
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Let me call this as II
′

because this is a particular case.
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So, then note that in the first case if I were to replace my cos(kct) by (eikct + e−ikct)/2 and then we
get,

=
1

2

[
f(x− ct) + f(x+ ct)

]
+

1

2c

∫ x+ct

x−ct
g(ζ)dζ +

1

2c

∫ t

0

dτ

∫ x+c(t−τ)

x−c(t−τ)
q(ζ, τ)dζ

So, this is nothing but the well known De Alembert?s solution for the wave equation that we had
found earlier for the regular wave equation. So, with this example I conclude our discussion on the
fractional ODE?s; however, I continue my discussion on my fractional PDE?s namely we will see some
special PDE?s in arising in fluids in signal processing and in quantum mechanics in my next lecture.
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