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Let me show you some other examples specially; let me show you some word problems. So,
this question says that suppose so, the problem say suppose in a 2 D plane let me just draw the
diagram. So, suppose in a 2 D plane I have a particle, let me say that the particle is located at
some point ζ, η and the particle is under the action of gravity.

So, the particle is under the action of gravity and it is going to and due to the action of
gravity it is going to fall. So, due to the action of gravity it will fall, let me call that that falling
trajectory by x, z . So, the question says what is the curve such that the particle falls under
the action of gravity and it this particle falls in such a way that this trajectory is independent
of my initial location. So, I need to find this curve this trajectory of the particle going from let
us say some point to the origin completely under the action of gravity such that this curve is
independent of the initial condition.

So, let me write down the word problem to this question. So, this is also known as the
famous Tautochronous motion of particles; so, tautochronous motion of particles. So, this
question is to determine the form to determine the form of a friction-less to determine the form
of a friction-less plane curve through the origin in a vertical plane along which a particle of
mass m falls; in a time that does not does not depend on initial position.

So, we need to find the trajectory along in which the particle is falling purely under the
action of gravity such that the trajectory does not depend on the initial position of the particle
. So, then well for the sake of starting the problem let me just say that at t = 0 the particle is
at position ζ, η. So now, let me just say that at any time, the position is denoted by this these
two variable x and y. So, that is what highlighted in this figure here.

So, now I know that by conservation of energy of the particle I know that the kinetic energy
the sum total of all the kinetic energy plus the potential energy of the particle is a constant.



So, the total energy of the particle is conserved. So, which means that let me write down the
kinetic energy; this is,

K.E + P.E = constant

⇒ 1

2
mv2 +mgy = mgη

So, that is equal to a constant. So, well so, η denotes the y coordinate of the particle. So,
this is the initial y coordinate of the particle. So, that is a constant here which means that I
have the following I have v2 so, let me rewrite this expression in terms of v2. So, v2 this is also
equal to ,

⇒ v2 =

(
ds

dt

)2

= 2g(η − y) ...(1)

So, I have re-written this energy conservation to find v in terms of y. So, then let me just
integrate 1 with respect to the time t.

So, to do that my time my time variable is from 0 to let us say time point capital T. So,
which means I need to find this capital T, this time point T where the particle x goes from ζ, η
to the origin.

So, at t = 0 that is the initial position of the particle and at t = T the final position is the
origin (0, 0). So, then let us integrate (1) so, when I integrate (1) so, I have the following:

v2 = 2g(η − y)

⇒ ds

dt
= −

√
2g
√
η − y

⇒ dt

ds
=
−1√

2g

1√
η − y

⇒
∫ T

0

dt = −
∫ 0

η

ds
√

2g
√

(η − y)
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=
1√
2g

∫ η

0

f ′(y)dy√
η − y

Where,

f ′(y) =
ds

dy
and s = f(y)

T
√

2g =

∫ η

0

f ′(y)dy(η − y)−
1
2 .....(2)

Here , (2) is Abel’s Integral 1st Kind,

f(η) =
T
√

2g

[Γ(1
2
)]2

∫ η

0

(η − y)
1
2
−1dy

Let, y = η sin2 θ

Use this in Integral,

f(η) = 2
√

2aη
f(y) = 2

√
2ay

Here,

a = gT 2

π2

Γ(1
2
) =
√
π

Given,
ds

dy
= f ′(y)

⇒ dy

ds
= sin θ
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ds

dy
= cosec θ = f ′(y) =

√
2a

y

y = 2a sin2 θ ....(A)

s =

∫
f ′(y)dy = 2

√
2ay = 4a sin θ

S = 4a sin θ

So, using my expression A here ,this is my standard cycloid . So, what it shows is that
this particular particle is going to follow a cycloid motion. So, what is the cycloid motion? If
people who drive cycles who drive cycles we know that the tyre of a cycle, if we were to track
a point on the tyre of a cycle it is going to; if it is going to go ahead in a helical fashion and
that is the motion of the cycloid. So, that is my cycloid ok. So, that is the expression that is
given by the by the trajectory of the particle falling purely under the action of gravity. So, let
us now consider another example.

So, let me show you another example. This example is in the area of fluid flow and again
Abel’s integration equation is quite useful in solving this problem. So, the problem says consider
the flow of water along x -direction through a symmetric through symmetric dam; consider the
flow of water in the x -direction through a symmetric dam in the y-z plane with y-axis along
the face with y-axis along the face of the dam. So, let me just draw the figure. So, the figure
is as follows. (Refer the above slide)

So, let me say that I have a dam. So, it is a 2 D dam and in such a way that the y axis is
along the face of the dam. So, which means and the flow of the water is along the x-direction.
So, let me call that the flow of the water is as follows. So, this is my x-direction. So, this is my
x axis here; so, which means my z- axis is perpendicular to y shown here as follows (Refer the
aove slide)
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So, then with y-axis along the face of the dam and I have to find the form of y equal to f z
the face of the dam. So, find the form of this face of the dam of the dam such that the quantity
of water per unit time per unit time is proportional to a given power of stream depth.

So, the problem says that I have to find what is the shape of this particular dam such that
the water is flowing perpendicular to the dam. And, such that the quantity of the water per
unit time that is flowing through the dam is proportional to certain given power of the depth
which means that the water which is flowing let us say let me denote the water quantity by q
and q will be a function of this dam depth which is z or a power f z (z).

Solution:
So, power of this height of the dam let us say the height is h or z. So, let me start this

problem. So, I am given let us call let me say that the water flux. So, let me denote let me
denote the water flux Q; so, let me denote the water flux by Q. So, I am going to find the flux
the flux through a small cross section of the dam, the flux through a small cross section the
flux through the small cross section dA of the dam.

So, we see that flux through the small cross section flux dQ through the small cross section
d of the dam is given by dQ,

dQ = V dA

So, I see that this now I am going to write this expression of v let me recall again energy
conservation recall energy conservation principle that is the energy of the water the energy
of the water at any given height will be will be conserved. So, which means that I have the
velocity v2 of the water is,

v2 = 2g(h− z)

⇒ dQ =
√

2g(h− z)1/2dA

So, then let us now re-write this expression for this small flux to come to a new expression.

dQ = a(h− z)1/2f(z)dz where, a =
√

(2g)
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Entire Flux:

Q =

∫ h

0

dQ =

∫ h

0

a(h− z)1/2f(z)dz

This is the Abel’s Integrals equation of type 1 (α = 3
2
,

Q(h) = aΓ(3/2)D
−3/2
h f(h) ....(I)

Given,Q(h) is proportional to given power of h, Let, Q(h) = hβ,
Now Invert the equation (I),

f(h) =
2

a
√
π

Γ(β + 1)

Γ(β − 1/2)
hβ−3/2 ; Lacroix Formula

If given β = 3
2
,

then, f(h)= constant and dam=rectangular.
If given β = 7

2
,

then, f(h) is proportional to h2 and dam=parabola.

So, which means that we can similarly proceed in similar fashion to come to other forms of
the expression for the shape of the dam.

So, which means that which means that other shapes are also possible depending on the
value of beta that is provided. So, that is going to complete our discussion on the problem and
that is also going to complete our discussion on this, this particular lecture. In my next lecture
I am going to continue my discussion on fractional ODE’s moving onto fractional PDE’s. And,
I am going to show you some specific cases of fractional PDE’s namely in simple harmonic
oscillations in fluid flow and in signal processing. So, thank you for listening. Thank you very
much.
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