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So, what I am going to introduce is the general discussion on fractional derivatives and
integrals. So, namely I am going to introduce fractional integrals; so, fractional derivatives and
integrals. So, what I start with is the following, let us consider the nth order non homogeneous
ODE, given by given by the following. So, let me write this down and I am given that the
domain of this ODE this is in 1D,

Dn(y) = f(x) ..(1) b ≤ x ≤ c

Now, I see that this particular ODE can be solved by looking at the two solutions: one for
the homogeneous case and one for the non-homogeneous case. I know that for the homogeneous
case; for the homogeneous case let me further, I need to give you the boundary condition.

So, for but let me just immediately state the result for the homogeneous case; for the
homogeneous case that is when f is identically 0, I have that the solution the solution is in this
pace off the basis functions.So, this is since this is an nth order ODE my solution is a linear
combination of all these factors, I see that my homogeneous case is for f is identically equal to
0 is a linear combination of all these expressions, all these factors.

So, what I have is the following. So, then let us see for f(x) now I am going to start looking
at the non-homogeneous case now.let us say For the non-homogeneous case f(x) continuous.

If I directly invert equation (1) I get back my solution y in terms of f. and when I do that
my solution y has the following integral:

Solution:

y(x) =

∫ x

a

(x− t)n−1

(n− 1)!
f(t)dt ....(2)



I want to highlight that 2 is the unique solution to my equation 1 under the initial conditions
given by the kth derivative of y evaluated at let us say any point a.

y(k)(a) = 0 b ≤ a ≤ c; k = 0, 1, 2.., n− 1

which means, so what I have shown here is that my solution to the non-homogeneous case
is given by this integral. Now, if I were to rewrite this (1) in the inversion, suppose if I say that
my Dn is an operator whose inverse exists.

So, which means that if I were to write; if I were to write my y to be the inversion of
this operator D; inversion of this operator D of evaluated at f(x) this inversion is going to be
nothing, but the integral that is defined by 2 here. So, the integral is :

y = aD−nx f(x) =

∫ x

a

(x− t)
(n− 1)!

n−1

f(t)dt

So, that is my I see that there is a relation between the inverse of the operator with this integral
ok. So, namely let me just define the inverse of this operator now.

=
1

Γ(n)

∫ x

a

(x− t)n−1f(t)dt

So, let me write down this expression again. So, what I have is the following.

y = aD
−n
x f(x) =

1

Γ(n)

∫ x

a

(x− t)n−1f(t)dt

I see that if I were to replace my n with a fractional α I am going to get the relation for the
inversion operator for the fractional derivative. So, let me do that let me replace. So, then I
get the formula for the fractional derivative with respect with order α.

aD
−α
x f(x) = aJ

α
x f(x) =

1

Γ(x)

∫ x

a

(x− t)α−1f(t)dt

2



So, then there are some specific definition; let us say that a is 0. So, if a=0 then that
definition is the Riemann;the Riemann definition of fractional integral and let us say for a
going to −∞, that is my Liouville’s definition of fractional integral.

So, let us see, let us try to evaluate the Laplace transform of the following ODE, I am given
the following initial condition that is0 6 k 6 (n− 1)

Dny(x) = f(x) ....(I)

Apply Laplace transform to the equation (I)

snȳ(s) = f(s)

ȳ(s) = s−nf̄(s)

Now the Inverse Transform,

y(x) = D−nx f(x) = L−1[s−nf̄ ]

y(x) = aD
−n
x f(x) = L−1

[
s−nf̄(s)

]

Consider Definite Integrals:

fn(x) =
1

(n− 1)!

∫ x

a

(x− t)n−1f(t)dt

⇒ aDx[fn(x)] =
1

(n− 2)!

∫ x

a

(x− t)n−2 f(t)dt = fn−1(t)

⇒ fn(x) =

∫ x

a

fn−1(t)dt = aJxfn−1(x)
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= aJx
2fn−2(x)

if I were to continue this is nothing, but the nth the application of the nth ,

= aJ
n
x f(x)

So, J x is my integral operator. So then, so that gives me a relation a recurrence relation
between the derivatives in each of these orders. So, that gives me a recurrence relation on these
integral operators here.

Laplace Transform of Fractional Integral/Derivatives:
let me consider the Laplace transform of integrals here. So, Laplace transform Laplace

transform of fractional integrals, the Laplace transform of fractional integrals or derivatives
to see what relation that we have. So,I am going to find let me just use, let me just use my
Riemann-Liouville definition. So, using Riemann-Liouville definition of the fractional integral
fractional integral to come to my expression here that the fractional derivative of f(t).

D−αf(t) = 0D
−α
t =

1

Γ(x)

∫ t

0

(t− x)(α−1)f(x)dx...(I) ;Re(α) > 0

So, that is that is the definition of my fractional integral, let me just say that my real part
of this fraction is positive. So, we see that there is almost no restriction on this α, the α can
be fraction the α can even be complex using this definition as long as the real part is positive
here .

So, let me just change the variable, u = (t− x)α

⇒ D−αt f(u) = 1
Γ(α)

∫ tα
0

du
α
f
[
t− u1/α

]
D [D−αf(t)] = D−α[Df ] + f(0) t

α−1

Γ(α)
..(II)

⇒ L [D−αf(t)] = L[g(t) ∗ f(t)]
= L

[
s−αf̄(s)

]
;α > 0

For α = 0,
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limα→0 L
[
tα−1

Γ(α)

]
= limα→0 s

−α = 1 ...(III)

Fractional Integral operator satisfies Law of exponents,
D−α

[
D−βf

]
= D−(β+α)f = D−β [D−αf ]

Example 1: If f(t) = tβ

Solution:

D−αtβ = L−1

[
Γ(β + 1)

sk+β+1

]
; β > −1

=
Γ(β + 1)

Γ(α + β + 1)
tα+β

In Particular,α = 1/2, β(= n)

D−1/2tn =
Γ(n+ 1)

Γ(n+ 1/2 + 1)
tn+ 1

2 ;n > −1
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