
Integral Transforms and Their Applications Prof. Sarthok Sircar Department of Mathematics Indraprastha Institute for Information Technology, Delhi Lecture -45

Introduction to Z - transform Part 3

$$z[f(n-m)] = z^{-m} \left[F(z) + \sum_{r=-m}^{-1} f(r) z^{-r} \right].$$
$$z[f(n+m)] = z^{m} \left[F(z) - \sum_{r=0}^{m-1} f(r) z^{-r} \right], m \ge 0$$

In particular:

$$z[f(n-1)] = z^{-1}[F(z) + f(-1)z]$$

$$z[f(n-2)] = z^{-2} [F(z) + \sum_{r=-2} f(n)e^{-r}]$$

$$z[f(n+1)] = z [F(z) - f(0)]$$

$$z[f(n+2)] = z^{2}[F(2) - f(0)] - zf(1)$$

, useful in solving IVP involving difference equation Proof:

(1)
$$z[f(n-m)] = \sum_{n=0}^{\infty} f(n-m)z^{-n}$$

use r=n-m $= z^{-m} \sum_{n=0}^{\infty} f(r)z^{-n}$

$$Z[f(n-m)] = z^{-m} \sum_{r=-m}^{m} f(r)z^{-r}$$

$$= z^{-m} \left[\sum_{r=-m}^{m} f(r)z^{-r} + \sum_{r=-m}^{m} f(r)z^{-r} \right]$$

$$= z^{-m} \left[F(z) + \sum_{r=-m}^{m} f(r)z^{-r} \right] = RHS$$

$$Z[f(n+m)] = \sum_{n=0}^{m} f(n+m) = n$$

$$Uce r = n+m = z^{m} \sum_{r=0}^{m} f(r)z^{-r} - \sum_{r=0}^{m-1} f(r)z^{-r-1}$$

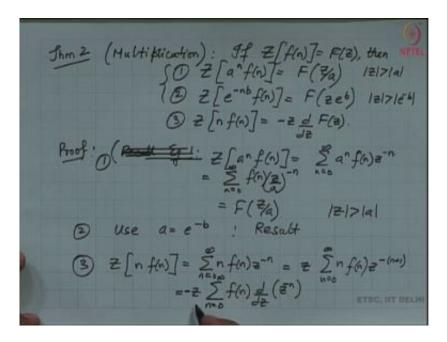
$$= z^{m} \left[\sum_{r=0}^{m} f(r)z^{-r} - \sum_{r=0}^{m-1} f(r)z^{-r-1} \right]$$

$$= RHS$$

$$= RHS$$

$$z[f(n-m)] = z^{-m} \sum_{r=-m}^{\infty} f(r)z^{-r}$$

$$= z^{-m} \left[\sum_{r=0}^{\infty} f(r)z^{-r} + \sum_{r=-m}^{-1} f(r)z^{-r} \right]$$


$$= z^{-m} \left[F(z) + \sum_{r=-m} f(r)z^{-r} \right] = RHS$$

$$(2) \ z[f(n+m)] = \sum_{n=0}^{\infty} f(n+m)z^{-n}$$

$$\text{use } r=n+m = z^m \sum_{r=+m}^{\infty} f(r)z^{-r}$$

$$= z^m \left[\sum_{r=0}^{\infty} f(r)z^{-r} - \sum_{r=0}^{m-1} f(r)z^{r-1} \right]$$

$$= z^m \left[F(r) - \sum_{r=0}^{m-1} f(r)z^{r-1} \right] = RHS$$

Theorem 2: Multiplication:

If
$$z[f(n)] = f(z)$$
, then
$$(1) \ z[a^n f(n)] = F(z/a) \quad |z| > |a|$$

$$(2) \ z[e^{-nb} f(n)] = F(ze^b) \quad |z| > |e^{-b}|$$

$$(3) \ z[nf(n)] = -z\frac{d}{dz}F(z)$$

Proof:

$$(1) z [a^n f(n)] = \sum_{n=0}^{\infty} a^n f(n) z^{-n}$$

$$= \sum_{n=0}^{\infty} f(n) \left(\frac{z}{a}\right)^{-n}$$

$$= F(z/a) \quad |z| > |a|$$

$$(2) \text{ use } a = e^{-b} : \text{ Result}$$

$$(3) z [nf(n)] = \sum_{n=0}^{\infty} nf(n) z^{-n}$$

$$= z \sum_{n=0}^{\infty} nf(n) z^{-(n+1)}$$

$$= -z \sum_{n=0}^{\infty} f(n) \frac{d}{dz} (rz^{-n})$$

$$Z[nf(n)] = -z d \left[\sum_{n=0}^{\infty} f(n) z^{-n} \right]$$

$$= -z d f(z)$$

$$= -z d f(z)$$

$$= -z d f(z)$$

$$Z(f)$$

$$= -z d f(z)$$

$$Z(f)$$

$$= -z d f(z)$$

$$Z(f)$$

$$= -z d f(z)$$

$$=$$

$$z[nf(n)] = -z \frac{d}{dz} \left[\sum_{n=0}^{\infty} f(n) z^{-n} \right]$$
$$= -z \quad \frac{d}{dz} F(z)$$
similery: (3):
$$\left[z \left[n^k f(n) \right] = (-1)^k \left(z \frac{d}{dz} \right)^k F(z) \right], k = 0, 1, 2...$$

Theorem 3: Division:

$$Z\left[\frac{f(n)}{n+m}\right] = -z^m \int_0^2 \frac{F(\xi)d\xi}{\xi^{m+1}}$$
$$z\left[\frac{f(n)}{n+m}\right] = \sum_{n=0}^\infty \frac{f(n)}{n+m} z^{-n}$$
$$= z^m \sum_{n=0}^\infty \frac{f(n)}{n+m} z^{-(n+m)}$$
$$= -z^m \sum_{n=0}^\infty f(n) \int_0^z \xi^{-1} (n+m+1) d\xi$$

$$\Rightarrow Z\left[\frac{f(h)}{h+m}\right] = -2^{m} \sum_{n=0}^{\infty} f(n) \int_{\xi}^{z} - (n+m+1) \int_{\xi}^{z} f(n) \int_{\xi}^{z$$

$$z \left[\frac{f(n)}{n+m} \right] = -z^m \sum_{n=0}^{\infty} f(n) \int_0^z \xi^{-(n+m+1)} d\xi$$
$$-z^m \int_0^z \xi^{-(m+1)} \sum_{n=0}^{\infty} f(n) \xi^{-n} d\xi$$
$$= -z^m \int_0^z \frac{1}{\xi^{m+1}} F(\xi) d\xi = RHS$$

Theorem 4: Convolution:

If
$$z(f) = F(z), z(g) = G(z)$$

then:

$$z[f*g] = z[f]z[g]$$
 where $f*g = \sum_{m=0}^{\infty} f(n-m)g(m)$

Proof:

$$z[f * y] = \sum_{n=0}^{\infty} z^{-n} \left(\sum_{m=0}^{\infty} f(n-m)g(n) \right)$$

$$Z[f+g] = \sum_{m=0}^{\infty} g(m) \sum_{n=0}^{\infty} f(n-m) z^{-n}$$

$$ULE \quad r = n-m$$

$$= \sum_{m=0}^{\infty} g(m) \sum_{n=0}^{\infty} f(r) z^{-(r+m)}$$

$$= \sum_{m=0}^{\infty} g(m) z^{-m} \sum_{n=-m}^{\infty} f(r) z^{-r}$$

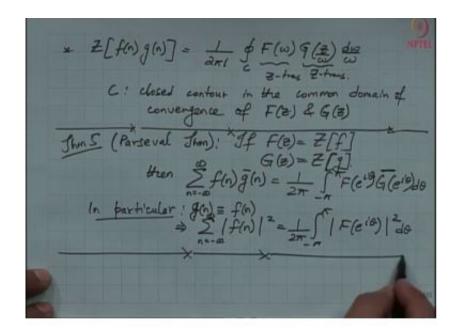
$$\frac{f(r)=0}{r < 0} \qquad Z[g] \qquad Z[f]$$

$$\Rightarrow z[f+g] = z[f] z[g] \qquad Z[f]$$
Here generally: If $f \neq g = \sum_{m=-\infty}^{\infty} f(n-m) g(m)$

$$\Rightarrow z[f+g] = z[f] z[g]$$

$$z[f * g] = \sum_{m=0}^{\infty} g(m) \sum_{n=0}^{\infty} f(n-m)z^{-n}$$
use r=n-m =
$$\sum_{m=0}^{\infty} g(m) \sum_{r=-m}^{\infty} f(r)z^{-(r+m)}$$
=
$$\sum_{m=0}^{\infty} g(m)z^{-m} \sum_{r=-m}^{\infty} f(r)z^{-r}$$

Assume f(r)=0, r<0


$$z[f * g] = z[f]z[g]$$

More generally,

If
$$f * g = \sum_{m=-\infty}^{\infty} f(n-m)g(m)$$

Bilateral z-transform

$$z[f * g] = z[f]z[g], [f(n) = g(n) = 0, n < 0]$$

$$z[f(n)g(n)] = \frac{1}{2\pi i} \oint_{c} F(\omega) \left(\frac{z}{w}\right) \frac{dw}{w}$$

C: closed contout in the common domain of convergence of F(z)&G(z)

Theorem 5:

Parseval theorem:

$$\begin{split} & \text{If } F(z) = Z[f] \\ G(z) = Z[g] \end{split}$$
 then
$$\sum_{n=-\infty}^{\infty} f(n)\bar{g}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} F\left(e^{i\theta}\right) \bar{G}\left(e^{i\theta}\right) d\theta \end{split}$$

In particular,

$$g(n) = f(n)$$

$$\sum_{n=-\infty}^{\infty} \left(f(n) \right)^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| F\left(e^{i\theta}\right) \right|^2 d\theta$$

thank you very much.