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Introduction to Z - transform Part 3

In particular:
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, useful in solving IVP involving differnce equation
Proof:
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Theorem 2: Multiplication:

Proof:
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Theorem 4: Convolution:

then:
z[f * g] = 2[f]2[g]
where f x g = Z f(n—m)g(m)
m=0
Proof:



Assume f(r)=0,r < 0

More generally,

Bilateral z-transform



Theorem 5:
Parseval theorem:

In particular,

thank you very much.
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C: closed contout in the common domain of
convergence of F'(2)&G(z)
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