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Welcome  friends  to  my  MOOC’s series  of  lectures  on  Statistical  Inference.  This  is

lecture number 5. If you remember in the last lecture I finished with how to obtain the

pdf of a  function of a random variable  X; when X is  continuous with pdf fx on an

interval say a to b.

(Refer Slide Time: 00:41)

And  the  function  is  monotonically  increasing  or  decreasing,  as  I  discussed  that  the

monotonicity is important, because then for any given y is equal to say H of x we can

uniquely determine x for given y.
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And the result was that pdf of y, if we call it gy then what we obtained is that g y is equal

to f at x into modulus of dx dy expressed in y. So, with that result let us now look at

some problems.

(Refer Slide Time: 03:31)

 Suppose X is a normal variate with mu and sigma square, X is a normal variable with

expected value is equal to mu and variance of X is equal to sigma square. Consider Y is

equal to a plus b X, then what is the pdf of Y?



So, we proceeded in the following way Y is equal to a plus bX therefore, given value of y

we can find the corresponding x is equal to y minus a divided by b, without loss of

generality let b be greater than 0.
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Since x is equal to y minus a by b therefore dx of dy is equal to 1 by b; therefore, by

using the theorem g of y is equal to f at y minus a by b multiplied by 1 by b, it is the dx

dy, and the modulus sign is not needed if because we are using b to be positive. Now, we

know that  f is  the density of a standard density of a normal variable  with mean mu

variance sigma square. Therefore, this term is 1 over root over 2 pi sigma into e to the

power 1 upon 2 sigma square into y minus a upon b minus mu whole square, multiplied

by 1 by b. This is equal to 1 over root over 2 pi into b sigma this becomes here e to the

power minus 1 upon 2 b square sigma square into y minus a minus b mu whole square.

So, we obtain the pdf of y is this. What can we say from here? We can see that therefore,

y is normal with mean is equal to a plus b mu and variance is equal to b square sigma

square. Therefore, we find that if we make a linear transformation on a normal variable

x, then the resulting variable is also a normal distribution with appropriate adjustment in

the mean and in the variance.
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We can get the same result using moment generating function also. What is the moment

generating function of a plus bX? Is equal to expected value of e to the power a plus bX

into t; This is equal to e to the power a t multiplied by expected value of e to the power b

X t; is equal to e to the power a t into expected value of e to the power x into bt. Now, we

know that the MGF of e to the power mu t plus half sigma square t square. If we look at

the term, we can find that it is basically the same term with t replaced by bt, also we can

see that there is a multiplier e to the power t.
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Therefore,  this term we can write by comparing with this as e to the power a t into

multiplied by e to the power mu t plus mu bt plus half sigma square b square t square; is

equal to e to the power mu b plus a t plus half bt square into sigma square. Now, we

know that this is the MGF of normal variable with mean is equal to a plus mu b, and

variance is equal to b square sigma square. Hence, by uniqueness of moment generating

function we can say that y is equal to a plus bx is distributed as normal with mean a plus

b mu and variance b square sigma square. So, the same result we can get using moment

generating function, but the above theorem helps us to get it in a very simple way.
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The above observation helps us in dealing with normal mu sigma square very efficiently

by transforming x to y as y is equal to x minus mu by sigma. What is the advantage? The

advantage is expectation of Y is equal to 0, and variance of Y is equal to 1. Therefore,

from arbitrary normal variate with mu and sigma square, we can get standard normal

distribution by doing this linear transformation.

And why we use normal 0 1? Because that makes our life simple; Even if you look at it

from moment generating function for standard normal the moment generating function is

e to the power t square by 2, but for arbitrary mu and sigma the moment generating

function becomes e to the power mu t plus half sigma square t square. And therefore,

dealing with that mathematically becomes more complicated. Let us now look at slightly

more complicated problem.
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Suppose X is a variate with normal 0 1. We want to know the distribution of x square.

Note X belongs to minus infinity to plus infinity. Because it is a standard normal variable

and it is minus infinity to plus infinity and all of us know that it is symmetric around 0.

What about X square? X square as you can see is a positive random variable.

And another problem with respect to this transformation is that this mapping is from x

squared to x is not unique. Because 4 minus a and a for both of them, since for minus a

and a for both of them the value of x square is equal to s square. Therefore, from x

square when I  go back to  x this  mapping is  not  unique,  as  I  have  explained in  my

previous lecture with respect to a discrete random variable if you remember I have taken

minus 2 minus 1 0 1 2, and from there I explained that the inverse mapping is not there.

Or in other words, we can see that in this case y is equal to x square, the function is not

monotonically increasing. And therefore, this theorem does not hold as such. So, what

we do? We make a small adjustment.
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Y is equal to X square is not one to one therefore, to obtain the pdf of Y, we go as

follows.  Let  g  be the  pdf  of  Y, maybe I  write  it  as g y and G y be the cumulative

distribution function; Therefore, G of y is equal to probability Y less than equal to y

which  is  equal  to  probability  X  square  less  than  equal  to  y.  And  because  of  the

symmetricity around 0, we can find this is equal to probability minus root y less than

equal to x less than equal to y.

(Refer Slide Time: 19:56)



Now, since normal is symmetric, and if this is minus root y and this is plus root y, then

this  probability  is  actually  2  times  the  probability  that  x  lies  between  0  to  root  y.

Therefore, probability minus root y less than equal to x less than equal to root y is equal

to 2 times 0 to root y fx dx. And since f is normal 0 1 so, this becomes 2 times 0 to root y

1 over root over 2 pi e to the power minus x square by 2 dx.

So, this is the value of Gy that is the cumulative distribution function for the random

variable y which is nothing but x square. Therefore, gy is equal to G prime y; that means,

I am differentiating this with respect to y. So, we know that that we get by first replacing

x with root y in this formula, multiplied by the derivative of root y with respect to y.

So, this is 2 times 1 over root 2 pi e to the power minus root y square is equal to y by 2

multiplied by d root y d y. Because we know that it is dx dy expressed in terms of y and

x is equal to root y. Therefore, we can write it as half root y since; so, we replace this

value here. Therefore, what we get?
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We get g of y is equal to root 2 upon root pi e to the power minus y by 2 into 1 upon 2

root y, which on simplification becomes 1 over root 2 pi e to the power minus y by 2 y to

the power minus half. So, we get a new type of density function for y; where y lies in the

interval 0 to infinity. Now is it a density that is completely unknown to us. Perhaps most

of you will say, yes. So, let us observe one thing, gamma of half is equal to root over pi. I

am sure you have come across this in your mathematics course. So, I am utilizing this



property, and writing this as g y is equal to half to the power half 1 upon root 2 is equal

to half to the power half upon gamma half e to the power minus half y, y to the power

half minus 1 0 less than y less than infinity. 

(Refer Slide Time: 25:21)

Do you remember this density? I am sure you can because, this is of the form gamma

lambda alpha which is lambda power alpha upon gamma alpha e to the power minus

lambda x, x to the power alpha minus 1, lambda greater than 0 alpha greater than 0 and x

greater than 0. Therefore, we can say is equal to actually gamma half comma half.
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This gamma half half is called chi square with one degrees of freedom. Why it is called

one degree of freedom? Because this chi square has come from one normal distribution,

that is why there is one independent random variable x which is giving rise to this chi

square distribution. And therefore, we call it chi square with one degrees of freedom and

notationally chi square with one degrees of freedom.

(Refer Slide Time: 27:01)

Now, the question is what happens to X 1 square plus X 2 square where X 1 and X 2 are

independent normal 0 1. We know that X 1 will become gamma half,  half.  X 2 will

become gamma half, half. And therefore, given 2 different random variables which are

independent we want to find pdf of X 1 square plus X 2 square. This we can do in many

ways, let me first do it using moment generating function. In fact, I prove something

more general than just half half. In fact, I prove it for general gamma distribution.
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Let x be a gamma lambda alpha lambda greater than 0 alpha greater than 0. Therefore,

moment generating function of x is equal to expected value of e to the power X t; is

equal to 0 to infinity e to the power x t multiplied by the pdf of x, which is lambda power

alpha upon gamma alpha e to the power minus lambda x, x to the power alpha minus 1

dx, right? Is equal to so, I have used this and this together multiplied by x to the power

alpha minus 1 dx and this will  converge for t  less than lambda;  Because in order to

converge this part has to be positive. So, that along with this minus it becomes negative.

So, this is this will hold good for t less than lambda. And we can easily find out this

integral, because we know that when we are integrating this part only. This is the pdf of

gamma distribution. Therefore, this integrates to 1, and therefore, the integration of this

part has to be gamma alpha upon lambda power alpha so that it cancels out. Therefore,

by comparing we can easily write that this part is going to be instead of gamma alpha

upon lambda power alpha it is going to be gamma alpha upon lambda minus t power

alpha, which says that the MGF is equal to lambda upon lambda minus t whole to the

power alpha. So, this is the moment generating function for normal for gamma lambda

alpha.
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Therefore, if we take 2 independent gamma random variables, gamma lambda alpha and

gamma lambda beta variates; And we want to know the pdf of so, say this is called X and

this is called Y X plus Y then MGF of X plus Y t, we have already seen that if 2 random

variables are independent, then the MGF of their addition of their sum is product of their

individual moment generating functions.

And just now we have found out that this moment generating function is lambda upon

lambda minus t whole to the power alpha. This is similarly going to be lambda upon

lambda minus t whole to the power beta. Therefore, the product becomes lambda upon

lambda minus t whole to the power alpha plus beta.
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And therefore, by uniqueness theorem by uniqueness of moment generating function, we

can say that x plus y is distributed as gamma with lambda same, but this  parameter

becomes alpha plus beta. So, what we obtain is that if X and Y are independent gamma

variates with same lambda, but the second parameter being alpha and beta, then X plus Y

is also a gamma variate with lambda alpha plus beta. 

Therefore, we find an interesting result with respect to gamma random variable. That as

we keep on adding independent random gamma variables, with the same lambda then the

summation of these random variables is also gamma with the same parameter lambda,

but the second parameter being the sum of the individual parameters.
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The  advantages  now  with  respect  to  chi  square  therefore,  if  X  1  and  X  2  are  2

independent normal 0 1, then X 1 square is basically a gamma variate with half and half.

X 2 square is also a gamma variate with half and half, therefore, X 1 square plus X 2

square is it  also a gamma variate with parameters half and half plus half  is equal to

gamma with half comma one; which we write as gamma with half 2 by 2. And this is

called chi square with 2 degrees of freedom. Why 2 degrees of freedom? Because we

have used 2 independent normal 0 1; Can we therefore, generalize from there?
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We can, in fact, X 1 X 2 Xn are independent normal 0 1, then X 1 square plus X 2 square

plus Xn square will be gamma with half. And the second parameter it is half for each on

each one of them therefore, when we add them up will get n by 2. Therefore, a gamma

half with n by 2 is same as a chi square distribution with degrees of freedom n. So, sum

of square of in independent random variables is chi square with n degrees of freedom,

and we can write it  is  pdf very simply, which is equal to lambda power alpha upon

gamma alpha into e to the power minus lambda x x to the power n by 2 minus 1 for 0

less than x less than infinity.

In this case, we could easily find the sum of 2 independent random variables. In general,

how do you find the sum of 2 arbitrary random variables or why some why not weighted

sum of  2  random variables,  the  difference  between  2  random variables  or  even  the

product of 2 random variables or division of x by y, when y not equal to 0, that is also a

random variable. So, is there any way to find the pdf of a function of 2 random variables.

So, the following theorem helps us in adding the following theorem helps us to find the

pdf of function of 2 random variables  under  certain  conditions.  So,  I  am stating the

theorem, but I am not going to prove it,  because the mathematics for proving that is

beyond the scope of this lecture.
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So, X and Y 2 random variables which we can write it as X Y. And therefore, I am

writing as a 2 dimensional random variable with joint pdf f; that is, f of x y gives the pdf



at x comma y. Now, consider two functions H 1 and H 2; such that Z is equal to H 1 of X

Y. So, Z is a function of X and Y, W is a function of X Y. Therefore, basically from XY

plane we are transforming it into another plane of z w; such that the pair of equations z is

equal to H 1 x y and w is equal to H 2 x y can be solved uniquely.
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Say, x is equal to G 1 of z w, and y is equal to g 2 of z w. So, you notice the similarity

with when we are talking about function of a single random variable. We wanted the

function to be monotonically increasing or decreasing so that we can get the inverse

unity. Similarly, given z and w we want to obtain that from the values z and w we can

identify the x and y uniquely. So, this condition ensures that also.
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Another condition is that the partial derivatives del x, del z, del x, del w, del y, del z, del

y, del w exists and continuous. So, we have from XY plane a mapping to Z W plane such

that  it  is  one  to  one.  So,  that  given  any  pair  here  we  can  uniquely  determine  the

corresponding X Y. And also the partial derivatives of X and Y with respect to both Z and

W they exist and continuous. 

Then the joint pdf k z w so, we are looking at the joint probability density function of

these 2 D random variables z w is f at G 1 z w, G 2 z w; that means, we are looking at the

pdf  of  original  random  variable  x  y,  but  expressed  in  terms  of  z  w  multiplied  by

something which is called the jacobian. What is Jacobean?
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Jacobian is the modulus of the following determinant del x, del z, del x, del w, del y, del

z, del y, del w. So, we compute the determinant and the pdf f expressed in terms of z w

multiplied by the determinant gives us the pdf for z w the joint pdf of z and w. What is

the advantage?

(Refer Slide Time: 47:07)

The advantages if we want to find pdf of a function z is equal to H of x y, then we

consider another random variable w is equal to say z is equal to H 1. So, let us call it H 2

of X Y obtain k z w the joint pdf, and just now I have shown the formula for obtaining it



integrate over w to obtain the pdf of z. Since our interest was only in this. In order to get

it is pdf, we need to find out first the joint pdf by appropriately defining w. So, that this

integration becomes easier, and from there we obtain the pdf of z. Therefore, let us now

look at the same problem of summation of 2 chi square distribution.
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We need to find out the pdf of X 1 square plus X 2 square. Since X 1 is normal 0 1 so,

we can consider X 1 along this axis, and X 2 along the y axis so that X 1 X 2 together

can cover the entire 2 D plane, where you are doing that? Because that guides us to take

a very meaningful transformation; what is that?
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So, we transform X is equal to R cos theta Y is equal to R sin theta. So, instead of X 1

and X 2, let  me call  them X and Y, therefore,  we are covering the entire 2 D plane

therefore, minus infinity less than x less than infinity, minus infinity less than y less than

infinity or is the radius of transformation, therefore, R is going to be from 0 to infinity,

and theta is covering the entire plane. So, theta will belong to 0 to 2 pi.

Therefore, Jacobean of transformation is equal to dX dR which is cos theta. DX d theta

which is minus R sin theta, dY d R which is sin theta and dY d theta is equal to R cos

theta.
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Therefore determinant of J is equal to R cos square theta plus R sin square theta is equal

to R. Therefore, that joint pdf R theta is equal to since x and y are independent, we can

write the distribution as the product of their individual is equal to 1 over 2 pi e to the

power minus x square plus y square by 2 into R. Now this has to be expressed in terms of

R theta, therefore, this is 1 over 2 pi into e to the power minus R square by 2 into R.

Therefore, g of R is equal to now I have to integrate out theta from 0 to 2 pi e to the

power  minus  R square  by 2  into  R into  d theta.  And therefore,  these  2 pi  is  being

cancelled therefore, what we get is, but we need to find out the density of R square.
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Because we need x square plus y square is equal to R square cos square theta plus R

square sin square theta is equal to R square. But so far we obtained the pdf of R, now we

need to find out the pdf of R square, therefore, we use the transformation of the first one,

let me write it in capital. Therefore, g of R square is equal to e to the power minus R

square by 2 into R multiplied by d R upon d R square; is equal to these are therefore, we

write as R square to the power half into e to the power minus R square by 2 and dr upon

dr square is equal to 1 upon 2 R. So, this cancels with this, and what we are get it half e

to the power minus R square by 2.
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Therefore if we write Z is equal to R square, then f at z is equal to half into e to the

power minus z by 2; which is equal to gamma half gamma 1. So, this is the result that we

have already obtained using moment generating function. With that I stopped here, in the

next class I will be talking about some more different types of random variables, and we

will try to obtain their pdf's in a similar way.

Thank you.


