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Prof. Niladri Chatterjee
Department of Mathematics
Indian Institute of Technology, Delhi

Lecture - 18

Statistical Inference

Welcome students to the MOOC'’s lecture series on Statistical Inference. In the last
lecture, we have talked about point estimation of the parameters of the underlying
distribution; from which a sample x 1, x 2, x n is taken. In particular, we have discussed

2 methods.

(Refer Slide Time: 00:49)
|.
We dbia Urnsel Yo ot
- Matwsd ’5} Momamis
- Yahoo 5} Moantvonaem L kadiwend

D

Method of moments and method of maximum likelihood; in method of moments what
we have done? We have calculated sample raw moments from the sample x 1, x 2, x n
and we have equated that with the theoretical moments as given by the distribution under
consideration. And by equating them we have formed equations and we obtained the
estimate for different parameters by solving those equations. On the other hand, the

philosophy of maximum likelihood is slightly different.

Here we try to differentiate the likelihood function of x 1, x 2, x n under the parameter
theta by taking it is derivative or partial derivative with respect to theta, and equating it
to 0, so that by solving for theta we get a function of x 1, x 2, x n which maximizes the

likelihood function. Or in other words, which maximizes the probability of obtaining the



sample x 1, x 2, x n and there theta for which that is maximized is considered to be the

maximum likelihood estimated.

(Refer Slide Time: 02:51)

However, the problem of point estimation is that it is on the basis of sample x 1, x 2, x n.
And based on that we are trying to estimate the value of the parameter theta; as I have
already shown you an example suppose a coin is tossed n times and the outcomes are say
100100010 0; that is there are 3 heads and remaining tails. Based on that, if we try

to estimate p then p hat comes out to be say 0.3.
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But suppose we make another experiment of the same coin, there may be 4 heads or
there may be 5 heads. And accordingly the p hat will change according to the number of

samples.

Hence, it is prudent to obtain and interval of the form say a b; such that probability theta
belongs to a b is very high, say 95 percent or 99 percent. What is the advantage? The
advantage that we are very confident that based on the sample we can see that theta is
going to belong to this interval with a very high probability. That assurance we cannot

give with respect to point estimation. Hence comes the idea of interval estimation.
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So, what we do here? We want to obtain statistics T 1 and T 2 based on the sample x 1, x
2, x n such that probability theta less than equal to T 1 is equal to say alpha 1, and
probability theta greater than equal to T 2 is equal to alpha 2.
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So, pictorially suppose, this is the range of theta; which we have already denoted as
capital theta. Depending upon the distribution and the parameter, the theta will change,

but suppose we have T 1 here.

Such that probability theta belongs to this interval, or theta less than equal to T 1 is equal
to alpha 1. And suppose this is the T 2 such that probability theta greater than equal to T
2 is alpha 2.

Then probability T 1 less than equal to theta less than equal to T 2 or say let them be
strict inequality, it does not matter because it is a continuous case and this probability is
therefore, going to be 1 minus alpha 1 minus alpha 2. If alpha 1 plus alpha 2 is equal to
alpha, then this interval has a probability say 1 minus alpha, that theta will lie in this

interval.
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Question is how to obtain this interval and the confidence of these intervals. By
confidence we mean, the probability that the parameter will remain within that interval T

1 and T 2. Typically, we consider 95 percent and 99 percent confidence intervals.

(Refer Slide Time: 11:09)

Consider 95 percent. Suppose this is the range of theta, we want T 2 such that in this
there is 2.5 percent chance that the variable will occur on this side of T 2, and say T 1
such that on this side also there is 2.5 percent chance that the theta will occur in this

region. So, the 95 percent confidence interval for theta is this.



If it is 99 percent, then we look at a T 2 such that the occurrence here is only 0.5 percent
and the occurrence probability of here is 0.5 percent. Therefore, that theta will occurred
in this interval has the chance 99 percent. So, these are that confidence intervals that we

try to obtain for the parameter theta or with the help of the sample x 1, x 2, x n.

(Refer Slide Time: 12:50)

To obtain this limits we have different tables, for this class I shall show the normal table

and chi square table. So, let us first understand how to see the normal table.
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We know the shape of the normal curve is somewhat like this consider this is 0. Let us
just look at normal 0 1, because for any other normal with mu and sigma square, we can
convert it to the standard normal distribution. We know that probability z which is
standard normal less than equal to 0 is equal to 0.5. So, for 95 percent we will look at the

value say call it z 0.975.

Because the area below this is equal to 97.5 percent; that is this area is 2.5 percent. And
since z is symmetric, this value such that below this is 2.5 percent is going to be minus of
this. Therefore, z of 0.025 is equal to minus of z of 0.975. So, there are tables where

these values are tabulated. First let me show you the normal table.
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So, if you look at that table, it is showing standard normal distribution table values

represent area to the left of the Z score, as you can see that.
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So, in this table there are all the values tabulated. Let us see the value corresponding to

0.975.
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Consider this value, this is 0.975. So, we have to obtain the x value for the value on the
real line such that probability a standard normal variate less than equal to this is 0.975.
How to obtain this? We first look at the left side of this table and we can see the value

given is 1.96, 1.9 as you can see.
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So, that is 1.9, and for the second decimal place we go above and we can find 6.
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Therefore we get 1.96. In a similar way, suppose we want 99 percent confidence interval.
Therefore, what we will be looking at? We will be looking at a value such that below that
the probability of occurrence is going to be 0.995. So, again we look at the table, and we

find that this is the value which is 0.99492 and if we go further we get 0.99506.



Therefore, 0.995 we would expect is somewhere at the middle. Now, if I go along the
row, very slowly we can see that the value corresponding to this is 2.5. As I am dragging

the my pen slowly you can see that the values are coming out to be 0.99492 and 0.99506.

So, if we go above, we can find the values are here along this column are 0.7 and 0.8. So,
we can say 2.58 is the value such that a standard normal distribution will have a value
less than 2.58 has the chance 0.995, what has the probability 0.995 or it is 99.5 percent
chance that the standard normal value will obtain a will have a value between below or a
standard normal variate will have a value below 2.58. Therefore, we need to remember at

least these 2 values.
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So, you remember this table, for standard normal, I write it both sided for 1 percent the
value is 2.58 as we have just observed. Above 2.58 the chance is only 0.5 percent. And

below minus 2.58 the chance is only 0.5 percent so, together we have 1 percent.

Or the 99 percent confidence interval is minus 2.58 to 2.58. Similarly, when we are
looking at say 5 percent here then this value we have just seen is 1.96 or 95 percent

confidence interval is minus 1.96 to 1.96.

So, these 2 values you need to remember because typically these are the values that we
use. Of course, there are many other values as you have seen in the table it is full with

values. So, for normal for different level of confidence we can actually obtain the value



from the table, but for this class we restrict ourselves altitude of 2 cases; both sided

interval and 95 percent confidence and 99 percent confidence. How to use this table?

(Refer Slide Time: 23:46)

So, consider this following problem. Suppose a coin is tossed 4,000 times and number of

heads obtained is 2,400. Question is can we consider the coin to be unbiased.

And second question, what will be the interval between which the number of heads
should lie so that we can consider the coin to be unbiased with 95 percent confidence.

So, let me explain the problem again.

(Refer Slide Time: 26:11)




So, there is a coin, we tossed it 4,000 times. If it is unbiased, expected number of heads
is equal to 2,000 and expected number of tail is also 2,000. But it does not actually mean
that in the result we will get exactly 2,000 heads and exactly 2,000 tells, that will not

happen in generally.

So, the what you want to estimate it? That what is the value of p or the probability of
success or the probability of getting a head in a toss given this result? Okay so, we solve
it in the following way. Since, the number of trials is high that is 4,000 is a large number,

we can consider normal approximation to the proportion of heads obtained.

(Refer Slide Time: 28:22)
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Let p be the random variable denoting the proportion of heads. Therefore, expected value
of P is equal to half, and variance of P as we know is equal to pq by n is equal to half into
half divided by 4,000. Therefore, P minus half upon root over half into half upon 4,000

may be considered as normal 0 1.
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Since, we obtained 2,400 number of heads therefore, obtained proportion is equal to
2,400 divided by 4,000 is equal to 6 upon 10 is equal to 3 upon 5. Therefore, 3 upon 5
minus half divided by root over half into half into 4,000 can be assumed to be normal 0
1.

Now this denominator is half into root over 1 upon 4,000 is equal to half into 1 by 20

into 1 upon root 10 is equal to 1 upon 40 into 1 upon root 10.

(Refer Slide Time: 31:11)




Therefore, the obtained value of the normal 0 1 variable is 3 by 5 minus half upon 1 by
40 into 1 by root 10 is equal to 6 minus 5 upon 10 divided by 1 upon 40 into 1 upon root
10; is equal to 1 upon 10 into 40 into root 10, which is equal to 4 into root 10 and which

is much greater than 3.

(Refer Slide Time: 32:36)
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Typically, almost 100 percent observation of normal 0 1 variable lies in the interval

minus 3 to plus 3. Since, the obtained value is much greater than 3 we can say the coin is
not unbiased. If the coin were unbiased, then it is the value obtained should lie in the

interval minus 3 to plus 3.

The second part of the question says that what should be the number of heads? Part b is
what should be the number of heads to consider the coin to be unbiased with 95 percent

confidence.



(Refer Slide Time: 33:59)

We know number of heads is follow binomial n, p. So, here n is equal to 4,000, p is equal
to half. Therefore expected number of heads is equal to N by 2 is equal to 2,000, and
variance is equal to npq is equal to 4000 into half into half is equal to 1,000.

(Refer Slide Time: 35:37)

Therefore, N, minus 2,000 divided by root over 1,000 has to be less than equal to 1.96,
this we have already obtained as we are looking for 95 percent confidence. Or in other
words, if N is the number of heads, then modulus of N minus 2,000 divided by 10 root
10 has to be less than equal to 1.96.
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Or modulus of N minus 2,000 is less than equal to 1.96 into 10 root 10 or 2,000 minus
1.96 into 10 root 10 has to be less than equal to N, less than equal to 2,000 plus 1.96 into
10 root 10. Now 1.96 into 10 root 10 is approximately 62.

Therefore, the 95 percent confidence interval for number of heads to consider the coin to
be unbiased is 2,000 minus 62 to 2,000 plus 62 is equal to 1938 comma 2,062. Or in
other words, if we toss the coin 4,000 times and the number of heads is obtained in this
range between these 2 values, then we are 95 percent confident that this coin is unbiased.

Let us look at another problem.
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Consider normal mu sigma square and we want to find confidence interval for sigma

square. Let us consider the case that mu is known.

In that case, sigma x 1 minus mu whole square 1 is equal to 1 to n divided by sigma
square. We know that, it is a chi square with n degrees of freedom where x 1 x 2 x n is

the sample obtained.

(Refer Slide Time: 40:55)

In general, the chi square distribution will have a shape like this. So, it is different from

normal 0, 1 as chi square is in 0 to infinity. It is a positive random variable therefore; it



ranges over 0 to infinity. And secondly, it is not symmetric around mean. Also the shape
of the chi square changes with that degrees of freedom, as degrees of freedom increases

our chi-square may take a shape like this.

(Refer Slide Time: 42:12)

Therefore for different degrees of freedom, we need to obtain the cut off values for
getting the desired interval. Therefore, we will be looking at a value here such that this
probability is alpha by 2 will be of looking at a value here, such that this probability is
also alpha by 2. So, that this is the 100 minus alpha percent confidence interval for chi

square. So, let me show the chi square table.
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So, if you look at you can see that it is a chi square distribution table. The values are
tabulated for different degrees of freedom and, the values are given for this point such

that the shaded area is equal to alpha.

That means the probability the chi square distribution is greater than this value, that
probability is alpha. And therefore, when we are looking at a 95 percent confidence
interval, we look at this value such that the above this the probability is only 2.5 percent.
Also we look at a value here such that, above that the probability is 97.5 percent. Or in
decimal form, this value will give corresponding to chi square with 0.975. 0.975 and for

this, we are looking at the value for chi square with 0.025.
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How do we get the values?

(Refer Slide Time: 45:31)

df X?ﬂfm .‘(I,'I:'ltm ‘(I,zn?.-'. -'(-_z_fin.ﬁn
1 0.000 0.000 0.001 | 0.004
2 0.010 0.020 0.051 0.103
3 0.072 0.115 0.216 0.352
4 0.207 0.297 0.484 0.711
5 0.412 0.554 0.831 1.145
6 0.676 0.872 1.237 1.635
7 0.989 1.239 1.690 2.167
8 1.344 1.646 2.180 2.733
1.735 2.088 2.700 3.325

@ 2.156 2.558 3.247 3.940
™T | 2.603 3.053 3.816 4.575

If we look at that table, we will find that the values are given for different degrees of
freedom; 1, 2, 3, 4 and here you can see the values tabulated are for 0.975, and if I go
further to the right, we can see the values are tabulated for 0.025.
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2 2 2 2 I
Xoos0 X 000 X 100 X 050 ‘E'..zn:z!'.

0.004 0.016 | 2.706 3.841 5.024
0.103 0.211 4.605 5.991 7.378
0.352 0.584 6.251 7.815 0.348
0.711 1.064 7.779 9,488 11.143
1.145 1.610 9.236 11.070 | 12.833
1.635 2.204 10.645 | 12.592 | 14.449
2.167 2.833 12.017 | 14.067 | 16.013

2.733 3.490 13.362 15.507 17.535
3.3 4.168 14.684 16.919 19.023
3.9 4.865 15.987 18.307 20.483
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ko a for x* = x3.

2
‘{,21 00 X 050

2706 | 3.841
4605 | 5.901

6.251 7.315
7.779 9,488
9.236 | 11.070
10,645 | 12.592
19007 | 14.067
157762 | 15.507

In fact, it is given for 0.005, 0.010, like that for a fixed set of alpha the values have been

computed. In particular, let us look at chi square with 100 degrees of freedom.
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25 | 10.520 | 11.524 | 13.120 | 14.611
26 | 11.160 | 12198 | 13.844 | 15.379
27 | 11.808 | 12.879 | 14.573 | 16.151
28 | 12461 | 13.565 | 15.308 | 16.928
29 13.121 14.256 16.047 17.708
30 13.787 14.953 16.791 18.493
40 | 20707 | 22164 | 24.433 | 26.509
50 | 27.991 | 29.707 | 32.357 | 34.764
60 35.534 37.485 40).482 43.188
70 43.275 45.442 48.758 51.739
30 51.172 53.540 57.153 60.391
90 59.196 61.754 65.647 69.126
(o | 67.328 | 70.065 | 74.222 | 77.929
wise

N

Look at the value it is 100 degrees of freedom, and corresponding to 0.975, this value is

74.22; that means, a chi square 100 degrees of freedom will take a value greater than

equal to 74.222 with probability 9.975 or 97.5 cases out of 100.

(Refer Slide Time: 47:09)

13,595 15.6HY 33.196 36.415 39.364
14.611 16.473 34.382 37.652 40.646
15.379 17.292 35.563 J8.885 41.923
16.151 18.114 36.741 40.113 13.195
16.928 18.939 37.916 41.337 14.461
17.708 19.768 39.087 42.557 45.722
18.493 20.599 40.256 43.773 46.979
26.509 20.051 51.805 55.758 59.342
34.764 37.639 6:3.167 67.505 71.420
43.188 46.459 74.397 79.082 33.298
51.739 55.329 85.527 90.531 95.023
60.391 64.278 96.578 101.879 | 106.629
69426 73.291 107.565 | 113.145 | 118.136
TR0 82.358 118.498 | 124.342 | 129.561

And, if we go further, we can see that for 0 to 5 the values are 129.561. So, let us

consider one problem.
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Suppose x 1, x 2 x 100 is a sample from normal 1 comma sigma square; such that sigma
x 1 minus 1 whole square is equal to 200. Find 95 percent confidence interval for sigma

square.

(Refer Slide Time: 48:53)

Since, x 1, x 2, x 100 are from normal with 1 comma sigma square; therefore, sigma x 1
minus 1 whole square upon sigma square is chi square with 100 degrees of freedom. We

have just seen the 95 percent confidence interval is 74.22 to 129.56. Therefore,



probability 74.22 less than equal to sigma x 1 minus 1 whole square upon sigma square,

less than equal to 129.56 is equal to 95 percent.

(Refer Slide Time: 50:19)

Or probability 1 upon 129.56 less than equal to sigma square upon sigma x 1 minus 1
whole square less than equal to 1 upon 74.22 is equal to 95 percent, or probability sigma
x 1 minus 1 whole square, upon 129.56 less that equal to sigma square, less than equal to

sigma x i minus 1 whole square upon 74.22 is equal to 95 percent.

Since, this is given to be 200 or probability 200 upon 129.56 less than equal to sigma
square less than equal to 200 upon 74.22 is equal to 95 percent. Or probability 1.54 less
than equal to sigma square, less than equal to 2.69 is equal to 95 percent. Therefore, 95
percent confidence interval for sigma square is equal to 1.54 comma 2.69. So, the

problems that we solved, they are all both sided we have taken.
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If we want to take one sided interval, say consider normal 0, 1 and we want one sided
interval; that is, if Z follows normal 0 1, we are looking at z alpha such that probability z

less than equal to Z alpha is equal to say 95 percent.

Then it is one sided interval; or in other words if it is a normal curve, we are looking at z
alpha such that this area is 95 percent. That is, this area is 5 percent, these are called one

sided intervals. And for normal 0, 1 at 95 percent, these value is 1.64.

(Refer Slide Time: 53:39)




If we are looking at 99 percent confidence interval and both sided therefore we are
looking at this is only half percent. And this is 0.5 percent; that means, only 1 percent are
beyond this range; therefore, this is 99 percent then for standard normal these value is
2.58. You should remember these values for solving problems with respect to interval

estimation. Okay students, with that I conclude my lectures on theory of estimation.

We have learnt the properties of estimators. We have learnt how to estimate the value of
a parameter from a sample, when you are looking at point estimation. Also today, we
have seen how to look at an interval estimation for a parameter given a sample x 1 x 2 x
n. In the next class, I shall start the last chapter of statistical inference namely, testing of

hypothesis.

Thank you.



