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Welcome students to the MOOCS lecture on Statistical Inference. This is lecture number

15.
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If you recollect in the last lecture we talked about 3 properties namely; unbiasedness,

consistency, and efficiency. We are talking about minimum variance unbiased estimate

and we have introduced the Cramer-Rao lower bound. What is that?
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If T is an unbiased estimator for some function g theta of the parameter of interest theta,

then under regularity  conditions  variance of T is  greater  than equal to  g prime theta

whole square divided by expected value of del del theta log of L which depends on theta

whole square and this quantity is called I theta named by R.A. Fisher.

Today first I will solve a few problems on efficiency or on minimum variance unbiased

estimator,  then  I  will  introduce  another  important  property  of  an  estimator  namely

sufficiency. So, some example First.
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Consider Bernoulli p. So, p is the parameter of interest. Suppose I have taken sample x 1

x 2 x n are samples, independent samples, then our aim is to find the minimum variance

unbiased estimator for p.
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So, what we do is observe that if x follows Bernoulli p, then x takes two values; one with

probability p and 0 with probability 1 minus p. Therefore, we can write the pdf or the

pmf as p of x is equal to p to the power x 1 minus p whole to the power 1 minus x. So,

check that if x is equal to 1, then this is p to the power 1 into 1 minus p to the power 0.

Therefore, this is p and if x is equal to 0, then this becomes 1 and this gives you 1 minus

p to the power 1 that is 1 minus p.

Therefore, L p of x 1 x 2 x n that is the likelihood function of the sample x 1 x 2 x n.

When the parameter is p is equal to product of i is equal to 1 to n p x i 1 minus p to the

power 1 minus x i is equal to p to the power sigma x i into 1 minus p to the power n

minus sigma x i.

I hope this is clear to you because p to the power x i i is equal to 1 to n. Therefore, the

power gets added and here it is 1 minus p to the power 1 minus x i. So, when I am adding

this over n of the observations, I get n minus sigma x i.
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Therefore, log of L is equal to sigma x i log p plus n minus sigma x i into log of 1 minus

p. Therefore, del log L del p. Remember that here theta is equal to p. The parameter that

we are interested in is equal to sigma x i d log p dp is equal to 1 upon p plus n minus

sigma x i upon 1 minus p into d 1 minus p dp which gives you minus 1 is equal to sigma

x i upon p minus n minus sigma x i 1 minus p.

Therefore, del 2 log l del p square is equal to minus sigma x i upon p square minus n

minus sigma x i upon 1 minus p whole square because this is 1 minus p to the power

minus 1. Therefore, for that we get 1 minus 1 and it is 1 minus p. So, here like here like

in this place here will be another minus 1. So, altogether there are 3 minuses which will

keep it as minus and this is the del log L del p square.

Therefore, L p is equal to minus of that is equal to sigma x i upon p square plus n minus

sigma x i upon 1 minus p whole square and we take expected value of that one. So, this

is equal to we know that.



(Refer Slide Time: 10:56)

If X follows Bernoulli and x 1 x 2 x n are samples, then sigma x i there is a binomial

with np. Therefore,  expected value of sigma x i  is equal to n p Therefore,  using the

linearity we can write I p is equal to np upon p square plus n minus np upon 1 minus p

whole square is equal to n upon p plus n upon 1 minus p is equal to n upon p into 1

minus p. Therefore, this is my information about p that I get from the sample.
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Therefore  by  Cramers-Rao  Inequality  or  Cramer-Rao  lower  bound  for  an  unbiased

estimator of p is 1 upon n into p into 1 minus p is equal to p into 1 minus p upon n. Note



that this one comes because in the numerator we are writing g prime p square. Here g p is

equal  to p.  Therefore we get  in the numerator  1.  So,  this  is  the lower bound for an

unbiased estimator.
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Now, let us consider X bar is equal to x 1 plus x 2 plus x n by n. Now, variance of X bar

is equal to variance of x 1 plus x 2 plus x n divided by n square is equal to n into p into 1

minus  p.  This  we know because  x  1 plus  x 2  up to  x n  is  a  binomial  distribution.

Therefore, it has variance n p into 1 minus p divided by a square is equal to p into 1

minus p upon n.

Therefore, what we find that variance of X bar is equal to p into 1 minus p upon n which

is  the  Cramer-Rao bound as  we have  already  seen  here.  Hence,  X bar  is  minimum

variance unbiased estimator for p.
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Let  us  now  consider  an  example  where  regularity  conditions  do  not  hold.  So,  for

example, consider uniform 0 theta. Here the parameter to be estimated is theta.

So, we take a sample x 1 x 2 x n and we know that f theta of x is equal to 1 upon theta as

it is uniform in the interval 0 theta. Therefore, we can calculate the Cramer-Rao bound as

follows.
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We know that one form of Cramer-Rao bound is n times expected value of del del theta

log f square. Here f is equal to 1 by theta. Therefore, log f is equal to minus log theta.

Therefore, del del theta of log f is equal to minus 1 upon theta.

Therefore, n expected value of del del theta log f square is equal to n into expected value

of minus 1 upon theta whole square is equal to n upon theta square. So, this is equal to i

theta.
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The Cramer-Rao lower bound of an unbiased estimator is 1 upon n by theta square. This

one is coming because g theta is equal to theta. Therefore, g prime theta whole square is

equal to 1 is equal to theta square by n. Therefore, for all unbiased estimator of theta, the

variance should be greater than or equal to theta square by n.
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Let us consider an unbiased estimator for theta. We know expected value of x n the nth

order statistic is equal to n upon n plus 1 theta. Therefore, n plus 1 upon n x n is an

unbiased estimator for theta.
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Let us compute the variance of n plus 1 upon n x n variance of n plus 1 upon n x n is

equal to n plus 1 upon n whole square into expected value of x n square minus expected

value of x n whole square is equal to n plus 1 upon n whole square into expected value of



x n square minus n plus 1 upon n whole square into n upon n plus 1 theta whole square is

equal to n plus 1 upon n whole square expected value of x n square minus theta square.

So, let us compute expected value of x n square.
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This is equal to integration 0 to theta. Let the value be t. We know that the pdf of x n is

equal to t square and we know that the pdf of x n is equal to n t to the power n minus 1

upon theta to the power n. And therefore, we are integrating it with respected to t. This is

equal to 0 to theta n upon theta to the power n t to the power n plus 1, dt is equal to n

theta power n t to the power n plus 2 upon n plus 2 theta, 0 is equal to n theta power n

theta to the power n plus 2 upon n plus 2 is equal to n upon n plus 2 theta square.
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Therefore, variance of n plus 1 upon n x n is equal to n plus 1 upon n whole square into n

upon n plus 2 theta square minus theta square is equal to n plus 1 whole square upon n

into n plus 2 theta square minus theta square is equal to theta square into a square plus 2

n plus 1 n into n plus 2 minus 1 is equal to 1 upon n into n plus 2 theta square. And we

have already found that the Cramer-Rao bound we have already found that the Cramer-

Rao bound is theta square by n.

Therefore, theta square upon n into n plus 2 has to be greater than equal to theta square

by n which is not correct for any positive n, because n is the number of samples and if n

is equal to an integer 1 2 3. Therefore this is never valid or in other words, we have

found  an  unbiased  estimator  whose  variance  does  not  obey  that  Cramer-Rao  lower

bound.
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That question is why did it happen? It happens because the range of integration while

computing  the  variance  is  0  to  theta  dt  that  what  we  have  done  and  this  limit  of

integration is not independent of theta. Hence, the regularity condition does not hold and

therefore,  the  Cramer-Rao lower bound is  no more  acting  as  a  lower bound for  the

variance of an unbiased estimator in this case.

So,  that  is  the  importance  of  the  regularity  conditions  because  without  them  the

minimum variance  unbiased  estimator  bound will  not  be  valid  with  that  I  close  the

chapter on efficiency.
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We now  look  at  another  important  property,  namely  sufficiency.  The  concept  is  as

follows. We know that if X 1 X 2 X n are from Bernoulli p, then an unbiased estimator

which is also MVUE is equal to X bar that is x 1 plus x 2 plus x n by n.
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Therefore, if we observe we see that the exact sequence of occurrence is not important in

estimating p. Suppose I toss the coin 10 times and my observations are 1 0 0 1 0 0 0 0 1

0, that means out of 10 tosses I have got 3 heads and rest are tails. Suppose another

sequence is 0 1 0 1 0 1 0 0 0 0 and the third one is 0 0 0 1 1 0 0 0 0 1. In all the 3 cases,



we find that out of 10 tosses there are 3 heads and therefore, in all the cases expected

value or the estimate is X bar, then expected value of X bar is equal to 0.3 or in other

words, we notice that this sample may contain a lot more information rather than just the

summation of that one; namely what is the first result, what is the last result, how many

times 0 and 1 occurred together etcetera. All this different informations one can find out

from each sample, but while estimating the value of p, we do not really need any one of

them. What I need is only the sum of the observations that is the number of heads that I

found in the sample.
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So, in other words we can say that sigma x i is sufficient to estimate p. We do not need

any other information. If I get only sigma x i, then that is good enough for us to estimate

p. This is the basic idea of sufficiency.
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Mathematically the definition is that an estimator T x 1 x 2 x n is said to the sufficient for

p. If the conditional distribution of X 1 X 2 X n given the value of T is independent of p,

where p is the parameter of interest or in other words, if instead of p we call it theta, we

can say that if T x 1 x 2 x n is said to be sufficient for estimating theta if the conditional

distribution of X 1 X 2 X n given the value of Y is independent of theta.
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So, let us look at for Bernoulli and we have x 1 x 2 x n. We know the pdf or the pmf is

equal to p to the power x i 1 minus p to the power 1 minus x i for all i is equal to 1 to n.



Therefore, P of X 1 is equal to x 1 X n is equal to x n is equal to p to the power sigma x i

into 1 minus p to the power n minus sigma x i.
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Now, suppose the value of sigma x i is equal to k given, therefore probability X 1 is

equal to x 1 up to X n is equal to x n given t is equal to k. Where, t is sigma x i is equal to

probability  X 1 is  equal  to  x 1 X n is  equal  to  x n and t  is  equal  to  k divided by

probability t is equal to k. What is this quantity if x 1 x 2 x n are such that sigma x i is

equal to k. Then, the above is probability X 1 is equal to x 1 X n is equal to x n being I

do not need to consider this because that is going to be satisfied automatically divided by

probability t is equal to k. Where, t is equal to sigma x i is equal to p to the power sigma

x i 1 minus p to the power n minus sigma x i and sigma x i is equal to k divided by

probability t is equal to k that is probability sigma x i is equal to k.
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So, this is nothing but p to the power k 1 minus p whole to the power n minus k divided

by since sigma x i is now a binomial random variable with parameter n p, it will take the

value k with probability n k p to the power k 1 minus p whole to the power n minus k is

equal to you see that these cancels with this. Therefore, we are left with 1 upon n c k and

if x 1 x 2 x n are such that sigma x i is not equal to k, then the numerator is 0.
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Therefore, the conditional distribution of x 1 x 2 x n given t is equal to k is 0 if sigma x i

not equal to k or this is equal to 1 upon n ck if sigma x i is equal to k.



Therefore,  we see that  this  is  independent  of p.  Therefore,  sigma x i  is  sufficient  to

estimate p and these we have are good.
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I  have  already shown that  X 1 plus  3,  X 2  plus  2,  x  3  plus  6  is  not  sufficient  for

estimating p when X 1 X 2 X 3 are from Bernoulli p.

So, we have a Bernoulli distribution. We have taken 3 observations from here and my

statistic is X 1 plus 3, X 2 plus 2, X 3 by 6. Let us call it T. Therefore, expected value of

T is equal to p because each X i is an unbiased estimator for p. Therefore, p plus 3, p plus

2, p upon 6 is equal to p. Therefore, X 1 plus 3, X 2 plus 2, X 3 upon 6 is unbiased for p.
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Question is, is it sufficient? We say that consider the case when T is equal to half. So,

case 1 if X 1 is equal to 1 X 2 is equal to 0 and X 3 is equal to 1, then expected value of

X 1 plus 3, X 2 plus 2, X 3 upon 6 is equal to half and case 2, if X 1 is equal to 0, X 2 is

equal to 1 and X 3 is equal to 0, then also X 1 plus 3, X 2 plus 2, X 3 upon 6 is it is

expected value or this is equal to half.

(Refer Slide Time: 44:50)



Therefore, probability T is equal to half is equal to probability X 1 is equal to 1, X 2 is

equal to 0 and X 3 is equal to 1 plus probability X 1 is equal to 0, X 2 is equal to 1, X 3

is equal to 0 is equal to p square into 1 minus p plus p into 1 minus p whole square.

So,  that  is  the  probability  that  the  statistic  T is  going  to  take  the  value  half,  but  a

conditional probability X 1 is equal to 1, X 2 is equal to 0, X 3 is equal to 1 given T is

equal to half is equal to p square into 1 minus p upon p square into 1 minus p plus p into

1 minus p whole square and this is not independent of p. Therefore, we see that even if

this is an unbiased estimator X 1 plus 3, X 2 plus 2, X 3 by 6, this is not sufficient to

estimate the value of p, ok.

Friends  with  that  I  stop  here.  In  the  next  class,  I  shall  do  some  more  studies  of

sufficiency.

Thank you.


