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Welcome students to my MOOCs online lecture on Statistical Inference. I am planning to

have about 20 lectures on this topic and this is the very first lecture of that series. It is

assumed that the listeners of this course have some background of basic statistics and

basic probability distributions. 

In this course of course, I will revise the probability part very quickly; and I will touch

upon only those aspects which are which will be used in course of my lecture on this

series. This course I expect will help under graduate students of statistics, maths and

computing, computer science etcetera and also basic science students at honors level to

understand the basics of statistical inference.

(Refer Slide Time: 01:25)

Before I go into the topic let me first explain what is statistics? As per Wikipedia, it is a

branch of mathematics dealing with collection, analysis, interpretation, presentation and

organization of data. So, one thing is very clear to us that statistics is something where

we deal with data. This has become very important in this era of big data, when data is in

abundance and we need to learn from this data.



(Refer Slide Time: 02:16)

So, historically the term statistics was used first in English by Sir John Sinclair who is

the  Scottish  politician;  and  he  was  a  prolific  writer  he  has  written  21  volumes  on

Statistical Account of Scotland that was around the time 1791 to 99. So, it is more than

200 years that the word statistics is being used in English.

(Refer Slide Time: 03:34)

Originally people think that the word has come from a German word Statistik which

means. So, at state level government was collecting data which was used by government

and administrative bodies so that was around middle of the 18th century in particular it is



around 1749 and the term was coined by Gottfried. So, it is more than 250 years old that

the term statistics statistic or something related to that one that is invoked.

(Refer Slide Time: 05:21)

By  the  time  18th  century  statistics  more  or  less  stand  for  systematic  collection  of

demographic and economic data by states. The basic purpose was taxing and military so

that is the basic historical background of statistics.

(Refer Slide Time: 06:35)

So, statistics essentially has two parts; one is descriptive statistics which is basically to

provide a summary of the data. I am not going to discuss descriptive statistics as I said



that it is not the very first course of statistics. I assume people know some basics of

descriptive statistics which may mean data visualization which is very very important for

practical purpose. Because when you see it on a graph in a 2D or 3D, one can get much

better intuitive idea of the data. And we have scatter plot you must be knowing all these

things  bar  chart,  pie  chart,  histogram,  box-plot  these  are  basic  data  visualization

techniques.

(Refer Slide Time: 08:24)

Also if you go for multivariate data, then one can visualize using many techniques, some

of them are constellation graph, one can think of Bi-plot,  one can think of Chernoff

Chernoff’s faces. Also apart from visualization, one can think of some basic properties

such as mean, median mode. 

These  are  the  central  tendency. Similarly,  one  can  think  of  range,  variance,  quartile

deviation etcetera as a study study of dispersion. And similarly one can think of higher

order  movements  like  skewness,  kurtosis  etcetera.  These  are  the  techniques  any

statistician should learn for dealing with data because these are the basic processing of

the data to understand what is going on there.



(Refer Slide Time: 10:35)

But statistics has an another purpose that is inferential statistics. We often want to study

some population parameters. For example, you may likes to know the average income of

the population of a city or state or country. We can think of the agriculture productivity,

total water resources etcetera. How do you study this when the population is huge, what

when the universe is huge,  it  is not possible to check each and every unit  of it,  and

measure the relevant properties to come to overall figure with respect to the universe.

(Refer Slide Time: 12:41)



Here comes the utility of statistical inference it is all about learning various parameters

of  a  population.  If  the  population  is  small,  one  can  actually  study  each  and  every

individual unit and come to a conclusion about the population typically that is called

complete enumeration complete enumeration. So, you are looking at all the members of

the population, you are measuring the parameter that you are looking for which may be a

weight, which may be height, which may be income which may be age. Similarly, you

can think of the total volume of forestry in a country etcetera. If a population is small

then it can be done very easily.

(Refer Slide Time: 15:02)

What if the population is very large, then complete enumeration is not possible or it is

time consuming. For example, if you look at census data where surveyors actually go

from  household  to  household,  and  collect  information  about  individuals  and  the

household; together it is expensive and time consuming and that is the reason census is

collected once in 10 years.  And the processing takes much more time to publish the

result. In practice that is not always affordable you cannot afford 10 years, 15 years to

complete your study because lot of planning economic or otherwise have to be done in a

much shorter span of time.



(Refer Slide Time: 17:00)

Here comes the role  of  statistics.  So,  what  statistics  will  do take a  sample  from the

population, process it, and use it to estimate population parameters. So, instead of a huge

population considering completely, we will take a representative sample out of it, will

process it. And from the results obtained after the processing we will try to infer about

the whole population this is the science of statistics and in this series of lectures I will

look into this aspect of statistics which is called statistical inference.

(Refer Slide Time: 18:41)



There are two basic approaches of statistical inference; parametric and non-parametric.

In this series, I will be focusing on parametric inference; non-parametric I am not going

to  cover  in  these  series  of  lectures  parametric  means  the  distribution  pattern  of  the

property of interest is known; and our job is to estimate the parameters. So, here comes

the concept of probability, you must have studied different probability distribution, and

you must have had the background of that one I will assume that much knowledge from

your side.

(Refer Slide Time: 20:51)

But to make it complete, I will first talk about some popular probability distributions. As

you all know they can be of two types primarily there can be mixed also, but I am not

considering  that  discrete  and  continuous.  When  the  random  variable  takes  discrete

values, then we call it  a discrete random variable and corresponding distribution is a

discrete probability distribution. 

Otherwise if it is continuous range along the real line then we call it a continuous random

variable with respect to discrete random variable we associate probability mass function

in short we call it pmf of x where x is one possible value that the random variable can

take. So, a pmf the basic properties is that pmf of x is greater than equal to 0 for all x and

some of the values over all x is equal to 1. So, any discrete values, which are greater than

equal to 0 and this sum up to 1, we can in principle consider that to be a probability mass

function.  It  does  not  mean that  any arbitrary  selection  of  values  which  satisfy these



properties  can  be  modeled  with  some  natural  phenomenon,  but  for  mathematical

treatment we can consider that to be a valid pmf.

(Refer Slide Time: 23:32)

Continuous random variable we assume that it is spread over the entire real line minus

infinity to plus infinity. And therefore, it does not make sense to assign a value to each

one of them because thus total probability has to be 1. So, in this case, we talk about

probability density function; in short pdf of x x belonging to R. So, if f x is a pdf, what if

fx is a function which is the probability density function then f x has to be greater than

equal to 0 on R everywhere, on R it is greater than equal to 0. And if you integrate it

from minus infinity to infinity, that has to be 1.



(Refer Slide Time: 25:03)

As  you  know  in  case  of  continuous  distribution,  it  does  not  make  sense  to  assign

probability  to  any  x.  In  fact,  when  we  talk  about  continuous  random variable  or  a

continuous distribution, we look at f of x is equal to probability that the random variable

less than equal to x which is obtained by integrating the probability density function

from minus infinity to x. And this is called the cumulative distribution function. So, this

is  the  cumulative  distribution  function.  And  this  makes  sense,  this  gives  you  the

probability that random variable is taking a value less than equal to x.

(Refer Slide Time: 26:58)



Corresponding to each random variable,  we can assign expected value of x which is

sigma over x x p x, p x is the corresponding probability mass function of x or it can be

written as minus infinity to infinity x times f x dx, where f x is the corresponding pdf of

x. As you all know variance of x is defined as expected value of X minus expected value

of  X whole  square  which  can  be  written  as  the  expected  value  of  X  square  minus

expected value of X whole square.

(Refer Slide Time: 27:57)

Also you know there is something called moment generating function which is called

MGF of x for real value t is equal to expected value of E to the power e x this is called

moment generating function because from here we can generate all the moments of the

random  variable.  For  example,  first  moment  is  expectation  of  x  second  moment  is

expectation of x square like that.



(Refer Slide Time: 28:47)

Now, let  me  revise  some  well  known  distribution  all  of  you  know. But  if  you  are

forgetting something, then you try to recap. Also I am not going to deal with all the

discrete  distributions  that  you might  have studied,  but it  will  be good if  you have a

revision of those random variables as well. 

The first one that I look at is binomial. It has two parameters n comma p, it takes values

if x is a random variable which is binomial with parameters n comma p then the possible

values for x are 0, 1, 2 up to n. And probability x is equal to x that is the probability mass

function at x is equal to n c x p to the power x 1 minus p whole to the power n minus x.

These all of you should know. And you also know that expected value of x is equal to n p

variance of x is equal to n p into 1 minus p.



(Refer Slide Time: 30:44)

And if x is binomial n comma p then its MGF at t is equal to q plus p e to the power t

whole to the power n, where q is equal to 1 minus p. Here n can be any integer greater

than equal to 1, 0 less than p less than 1. So, for so the binomial distribution is defined

for all n greater than equal to 1 integers; and for any value of p between 0 to 1. 

As you know that binomial distribution is used to obtain, the distribution of the number

of heads of a coin where probability of getting a head is p. And if the coin is tossed n

times what is the probability that one will obtain x many heads. So, probability of x

heads in n tosses right that probability is going to be ncx p to the power x q to the power

n minus x so that is only a model. In reality when some experiment is going on n number

of times where probability of success is p binomial distribution gives you the probability

of obtaining certain particular value.

For example, if a machine is producing some items say nut bolts, they can be defective

or they can be ok. Suppose, the probability of getting non-defective nut bolt is p and that

machine has produced 10,000 many nut bolts in a day. So, as a producer or manufacturer,

one may like to know how many of them are defectives or how many of them are non-

defectives of course, there is nothing guaranteed it is a probability it is a random event

and the probability can be estimated using binomial model.



(Refer Slide Time: 34:00)

The next  one is  Poisson distribution.  This  is  also a  discrete  distribution  and it  takes

values 0, 1, 2, 3 up to infinity that means, it can take any non-negative integral values.

Poisson distribution can be used to model the number of arrivals when there is a flow of

incoming things.  For example,  the number of cars passing or say suppose there is  a

conveyor belt which is carrying the material the items produced by a machine, and then

suppose the defective items are coming at a rate say 2 per minute, then what is going to

be the expected number of defective items if the machine runs for half an hour.

Again this is a random variable, it is not fixed, but the number of defective items that are

coming that will take different values different integral values and the probabilities can

be modeled using Poisson random variable, it should have one parameter lambda. If we

know the lambda then we should be able  to  know everything about  the distribution.

Probability x is equal to x is equal to e to the power minus lambda lambda power x upon

factorial x x is equal to 0, 1 etcetera lambda greater than 0.

If you are recalling then you will be knowing that the expected value of x is equal to

lambda; variance of x is equal to lambda; and the moment generating function of x the

point t is equal to e to the power lambda into e to the power t minus 1. They are very

easy to compute as it is not a first course on probability, I am not computing it, but it will

be good if you revise these things. Another interesting point to note that for binomial

random variable, variance was npq or np into 1 minus p. Since 1 minus p is less than 1,



we knew  that  the  variance  of  a  random binomial  random variable  is  less  than  the

expected value. In this case, we can see that the expected value and the variance both are

same.

(Refer Slide Time: 37:43)

Now, I will consider another discrete random variable which is called geometric random

variable. It also has one parameter p like binomial here also we look at tossing a coin.

And p is the probability of getting a head. So, in geometric random variable, we want to

study how much one has to wait to get one head. 

So, probability x is equal to x is equal to q to the power x into p, where x is equal to 0, 1,

2 like that. And it is 0 otherwise; that means, suppose the geometric random variable

takes a value two that means you have to make two tosses before getting a head. So, in

the first toss, you got a tail whose probability is q; in the second toss, you get another tail

whose probability  is  q.  So,  you have  to  wait  for  two tosses  to  get  the  head and its

probability is p. So, overall probability is q square into p for x is equal to 2.

This is the basics of geometric random variable and it is used for modeling the waiting

time. And as before I am giving you the values of expectation of X is equal to q by p;

variance of x is equal to q by p square. And moment generating function of x, I suggest

that you verify these results that will give you some practice of working on examples as

in course of time I will give you some assignments, where you will be needing some



practice of solving problems. And by solving this on your own you will get that required

practice.

(Refer Slide Time: 40:36)

Now, let  me look at  some continuous  random variables,  the simplest  one is  perhaps

uniform a, b or on the real line there are two points a and b. And the distribution of the

random variable is uniform that means all values are equal likely therefore if we call it f

x, then f x is basically constant on a, b and 0 otherwise.
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So, if the constant is c, then integration a to b c dx is equal to 1 or c into b minus a is

equal to 1 or c is equal to 1 upon b minus a. Therefore, a uniform distribution on an

interval a to b will have a constant density function is equal to 1 upon b minus a you may

be wondering why I am integrating only from a to b why not from minus infinity to

infinity that is because minus infinity to a in this region f x is 0 and also b to infinity in

this  region f  x  is  0.  Therefore,  when we add,  when you integrate  them they do not

contribute to the overall integration.

(Refer Slide Time: 43:15)

So, what is the mean of a uniform random variable mean is equal to b plus a by 2 or

since all the points are uniform, it is the midpoint of this all right. The variance is equal

to b minus a whole square upon 12. And the moment generating function of x at t is

equal to e to the power bt minus e to the power at upon t into b minus a, when t is not

equal to 0, so that is the basic properties of uniform distribution, the most well known

continuous random variable is normal distribution.
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Typically, we have mean 0 and variance equal to 1, then it is called standard normal

distribution pdf at x is equal to 1 over root over 2 pi e to the power minus x square by 2

minus  infinity  less  than  x less  than  infinity. So,  you see that  this  is  one continuous

random variable that is defined over the entire real line. And if it is centered around 0

with variance is equal to 1, it is called a standard normal distribution. Many of you are

familiar with a curve of this type which typically is used for standard normal.

(Refer Slide Time: 46:04)



The  MGF  of  x  t  is  equal  to  e  to  the  power  t  square  by  2.  However,  if  a  normal

distribution has mean equal to mu and variance equal to sigma square, then pdf is equal

to 1 over root over 2 pi sigma into e to the power minus x minus mu whole square upon

2 sigma square ok. Mu can be any real number and sigma square being a variance of

course has to be positive. And this is going to give you the pdf. In this case, the MGF is

going to be e to the power mu t plus half sigma square t square. If you put mu is equal to

0,  and sigma square  is  equal  to  1,  you get  the  moment  generating  function  for  the

standard normal random variable.

(Refer Slide Time: 47:47)

Our next focus is on exponential distribution. This is also used for modeling sum arrival,

where  lambda  is  typically  the  arrival  rate.  So,  if  x  is  a  random  variable  which  is

following exponential distribution with parameter lambda where lambda is greater than 0

then f of x is equal to lambda e to the power minus lambda x for x belonging to 0 to

infinity. It can be proved, or I will rather ask you to prove that expectation of X is equal

to  1  upon  lambda;  variance  of  X  is  equal  to  1  upon  lambda  square.  And  moment

generating function of X at t is equal to lambda upon lambda minus t, of course it will be

valid if lambda is greater than t.
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Before I close I will give you one more distribution that will be used often in this course

that is called gamma distribution. It has two parameters; lambda greater than 0 and alpha

greater than 0. And f of x is defined as lambda power alpha upon gamma alpha e to the

power minus lambda x x to the power alpha minus 1 0 less than. So, it is defined for non-

negative x which is going from 0 to infinity; and this is going to be the corresponding

PDF.
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If we integrate this quantity e to the power minus lambda x into x to the power alpha

minus 1 in the range 0 to infinity, then we can write it as 0 to infinity e to the power

minus lambda x, lambda x to the power alpha minus 1 into 1 upon lambda to the power

alpha minus 1 dx; I have used lambda power alpha minus 1. So, I have cancelled it put

lambda x is equal to z, therefore, dz dx is equal to lambda therefore, dx is equal to dz

upon lambda. So, this now I can write it as a is going from 0 to infinity, z is also going

from 0 to infinity as lambda is positive.

So, it is 0 to infinity e to the power minus z, z to the power alpha minus 1 1 upon lambda

alpha minus 1 into dz upon lambda is equal to 1 upon lambda power alpha integration 0

to infinity e to the power minus z z to the power alpha minus 1 dz. If you remember your

mathematics this is the famous gamma integral, and this is actually gamma alpha.

(Refer Slide Time: 52:36)

Therefore, the whole integration boils down to gamma alpha upon lambda power alpha.

So, this is what we have obtained when I am integrating 0 to infinity e to the power

minus lambda x x to the power alpha minus 1 dx. Therefore,  if we multiply this by

lambda power alpha upon gamma alpha, then we get this quantity which integrates to 1.

Therefore, lambda power alpha upon gamma alpha e to the power minus lambda x x to

the power alpha minus 1 is a valid pdf.
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So, what are the mean and standard deviation expectation of X is equal to alpha upon

lambda. Variance of X is equal to alpha upon lambda square. And moment generating

function of X t is equal to lambda upon lambda minus t whole to the power alpha where t

is  less  than  alpha  ok.  So,  these  are  some  of  the  basic  probability  distributions  or

probability mass functions that I will be using during the course. 

Also I will be using some distributions like chi square, t, f. In some of the subsequent

lectures, I will derive those distribution what do they mean because I will be using them

in later part of statistical inference when I will be doing testing of hypothesis. Thank you

for your attention to this course.

Thank you.


