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Now, I  am going  to  give  few State  Transition  Diagrams  for  the  time  homogeneous

continuous time Markov chain. You see the first example it has only 2 states 0 and 1. So,

the state space S is a 0 comma 1, and the time spend in the state 0 before moving into the

state 1 that is,  exponentially distributed with the parameter  lambda. Once the system

come to the state 1 in the time spent in the state 1 before moving into the state 0 that is

exponentially distributed with the parameter mu, lambda is strictly greater than 0 and the

mu is also strictly greater than 0.

That  means;  you  know  the  exponential  distribution  has  the  mean  1  divided  by  the

parameter therefore, the average time spent in the state 0, before moving into the state 1

that is, 1 divided by lambda. The average time spending in the state 1 before moving into

the state 0 that is, 1 divided by mu. Since, it is a 2 state so over the time the system will

be in the state 0 or 1, and you can classify the states also the way we have discussed in

the continue discrete time Markov chain.



Since both the states are communicating, both the states are accessible from each other

each other direction therefore; both the states are communicating each other. Since the

state space is a 0 and 1 and both the states are communicating each other therefore, this

is a irreducible Markov chain. For a irreducible Markov chain all the states are of the

same  type  for  a  finite  Markov  chain  we  have  at  least  one  positive  recurrent  state

therefore, both the states are going to be a positive recurrent state.

But here there is no periodicity for the continuous time Markov chain therefore, we can

conclude the first example, both the states are positive recurrent and the Markov chain is

a irreducible Markov chain. So, the continuous amount of time system spending in state

0 and 1 that is exponentially distributed with the parameters which I discussed earlier.

Now I am moving into the second example. In the second example we have a state space

is a countably infinite, and the system spending in this state 0 before moving into the

state 1 that is, exponentially distributed with the parameter lambda naught.

Whereas in the state 1, the system can spend a exponential amount of time, the amount

of  time  spending in  the  state  1  before  moving into  the  state  2  that  is  exponentially

distributed with the parameter lambda 1. And similarly the system spending in the state 1

before moving into the state 0 that is, exponentially distributed with the parameter mu 1

therefore, this is mu 1 and this is lambda 1.
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Therefore, the time spending in the state 1 before moving into any other state that is,

going to be minimum of the exponentially distributed with the parameter lambda 1, 1

random variable you can call it as a X and you can call it as an other random variable

that is, a exponentially distributed with the parameter mu 1 therefore, the amount of time

spending  in  the  state  1  before  moving  into  any  other  state,  that  just  now we  have

controlled at that waiting time distribution is exponentially distributed that we will come

from here also.

So, here these 2 random variables are independent X and Y are independent random

variables, both the random variables are independent therefore, the time spending in the

state 1 before moving into any other state that is going to be minimum of the random

variable with the exponential distributed parameter lambda 1 and the random variable

which follows a exponential distribution with the parameter mu 1. You know that the

minimum of 2 exponential as long as both the random variables are independent random

variable, then this is also going to be exponential distribution with the parameters, with

the parameter lambda 1 plus mu 1.

 as long as both the random variables are independent and both are exponential. You can

do it as a homework minimum of 2 exponential are going to be exponential with the

parameter  lambda  1  plus  mu  1  therefore,  the  time  spending  in  the  state  1,  that  is

exponential distribution with the parameter lambda 1 and mu 1. Also one can discuss

what is the probability that the system moving into the state 2, before moving into the

state 1, that is a lambda 1 divided by lambda 1 plus mu 1.

Similarly, what is the probability that the system moving into the state 0 before moving

into the state 2 that is mu 1 divided by lambda 1 plus mu 1, that also you one can find

out.  So,  what  is  the  conclusion  here  is  their  time  spending  in  the  state  1  that  is,

exponential  distribution  with  the  parameter  lambda  1 plus  mu 1.  Similarly, the time

spending in the state 2 that is suppose if it is a lambda 2 then lambda 2 plus mu 2.

So, this is a one type of a continuous time Markov chain. The third example, this is also

continuous  time a Markov chain;  in  sort  of  a  2  dimensional  Markov chain  with  the

labeling with the 0 comma 0 1 comma 0 2 comma 0 and so on. So, all the labeling,

which is parameters for the exponential distribution. So, the change from the discrete

time  Markov  chain  state  transition  diagram  and  the  state  transition  diagram  of  a



continuous  time  Markov  chain,  here  there  is  no  cell  flow.  And  the  labels  are  the

parameters for exponential distribution.

Whereas the discrete time Markov chain it is a one step transition probability going from

one state to other states. Here the labels the arrow gives the, the time spending in the

state  exponential  distribution with the parameter  lambda naught  and moving into the

state 1 and so on.

(Refer Slide Time: 07:38)

Now, I am going to find out how now I am going to find out the P ij of t for that; i am

going to do the derivation starting with the Chapman Kolmogorov equation.

Let me start with what is the transition probability of system is moving from i to j during

the time 0 to t plus capital T that is nothing but, what is a transition probability system

will be in the state j at the time point at t plus capital T, given that it was in the state i at

time 0. That is same as I can in between make a some other state, I can make a one more

state k at time point t, for all possible values of k also i will get the same result.

That is same as I can make a summation over k, k belonging to s, s is a state space that is

same as what is the conditional probability of system will be in the state j at the time

point t plus capital T given that; it was in the state i at time 0 as well as it was in the state

k at small t also, multiplied by what is the transition probability of system moving from 0

to t from the state i to k; that is, same as the first conditional probability, you see this is



same as the Markov property which we have discussed in the definition of a continuous

time Markov chain there I have discussed the CDF Cumulative Distribution Function.

Here it is the probability mass function whereas, this is a conditional probability mass

function, what is the conditional probability mass function of system will be in the state j

at time point a small t plus capital T, given that; it was in the state i at the time point 0 as

well as it was in the state k at the time point t, and you know that 0 less than t less than t

plus capital T, because the way we made it is all these values are greater than 0.

Therefore, by using the Markov property of a continuous time Markov chain; so this is

same as what is the probability that the system was in the state k at time small t. And

move  into  the  state  j  at  the  time  point  t  plus  capital  T.  Again  you  use  the  time

homogeneous property, first we use the Markov property therefore, this is a transition

probability of a t to t plus t moving from the state k to j, then use the time homogeneous

property therefore, only the length matters therefore, t to t plus capital T that is same as 0

to capital T.

Therefore, the system is moving from the state k to j, from 0 to capital T that is, a P k j of

T. The second one it is a transition probability system is moving from state i to k during

the interval 0 to capital T. Therefore, this is a i to k of t so this is valid for all i comma j

with the t  greater than or equal to 0 and capital  T is also greater than or equal to 0

therefore, the left hand side is the transition probability of system is moving from the

state i to j from 0 to t plus capital T that is, same as the summation over I can rewrite in a

different way; i to k in the interval 0 to small t, k to j instead of a small t to small t plus

capital T because of the time homogeneous I am just making 0 to capital T.

Therefore this is valid for all values of k summation, this equation is called the Chapman

Kolmogorov equation for a time homogeneous continuous time Markov chain, because

here for this transition probability we have used a Markov property as well as the time

homogeneous property also therefore, this is a Chapman Kolmogorov equation of the

transition probability of system moving from i to j in small t plus capital T can be broken

into product of these for all possible values of k.

So, like this you can break it many more ways with the summation for all for different

state of k. Using these we are going to find out the transition probability of P ij of t you

remember to find out the distribution of x of t you need a initial state probability vector



as well as the transition probability P ij of t. The initial state probability vector is always

given, you have to find out the P ij of t; once you know the P ij of t you can find out the

distribution of x of t for any time t.


