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This is continuous time Markov chain. I am planning for 6 to 8 lectures in this model and

I am going to start the lecture 1 with the definition of continuous time Markov chain then

the  derivation  of  Kolmogorov  differential  equations.  And,  I  am going  to  give  some

simple examples for the continuous time Markov chain and also I am trying to give the

stationary and the limiting distributions of continuous time Markov chain in this lecture.
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Let me start with the definition; definition of continuous time Markov chain. A discrete

state continuous time; that means, the state space is discrete; that means, that the possible

values of the random variable going to take the value for possible values of parameter

space that is going to be finite or countably infinite. Therefore, the state space is going to

be call it as a discrete.

Continuous  time  means,  the  parameter  space  or  the  possible  values  of  the  t,  that

collection is a uncountably infinite. Therefore, it is called a continuous time; that means a

parameter space is continuous. So, a discrete state continuous time stochastic process X

of t for t greater than or equal to 0 need not be t greater than or equal to 0 also, but here, I

am making the very simplest one.

So, the X of t for fixed t, it is a random variable for every t that collection that is going to

be a stochastic process. And the state space is discrete and parameter space is continuous

and that stochastic process is going to be call it as a continuous time Markov chain if it

satisfies the following condition.

If you take n time points, arbitrary time points n plus 1 time points, that is a t naught to t

n, you can say if the t naught can be 0 also and with this inequality t naught less than t 1

less than t 2 and so on t n. And you take the any arbitrary t that is a t n less than t if this

inequality.



For fixed t, that x of t is going to be a random variable. Therefore, now we are going to

find out the conditional distribution for this n plus 1 random variable with the random

variable x of t. That means, at t naught you have a x of t naught that is a random variable

at t 1 x of t 1 is a random variable.

Similarly, at t n, x of t n is a random variable you have n plus 1 random variable with this

n random variable given; that means, it takes already some values with the x naught x 1 x

n. So, on respectively and you are finding the conditional CDF for the random variable x

of t.

So; that means, you have n plus 2 random variables taken at the arbitrary time points a t

naught t n as well as a small t and you are finding the conditional CDF of the random

variable X of t given that already the other n plus 1 random variables taken at those

arbitrary time points you taken the value x naught x 1 and so on t x.

And, it is taken already these values that conditional distribution conditional CDF if that

is same as again, it is a conditional CDF of X of t given the last random variable X of t n

is equal to x.

So, these a n plus 1 time points are arbitrary time points. So, if it satisfies for all n for

every n; that means, the conditional distribution of n plus 1 random variable is same as

the conditional distribution of the last random variable.

If this property is satisfied by the discrete state continuous time stochastic process for

arbitrary time points, then that stochastic process is called a continuous time Markov

chain. This is very important concept this is called the Markov property; that means, a

the t is a sort of a future.

So, what is the probability that the random variable be in some state at the future time

point t given that, you know the present state that is where this system is in time point t n

that is small x n and I know the past information starting from X of t naught till X of t n

minus 1.  I  know the information;  that  means,  a what  is  the probability  that  a future

random variable X of t will be in some state given that, it was in the states x naught at

time point t naught, it was in the state x 1 at the time point to t 1 and so on.



Latest at the time point t n the system was in the state x n that is same as what is the

probability that the future the random variable will be in some state at time point t given

that, it is now in the state x n at that time point t n; that means, a future given present as

well  as  the  past  information  is  same  as  future  given  only  the  present  which  and

independent of the past information. That is called the memory less property or Markov

property.

So, since this property is satisfied by the stochastic process, which has the state space is a

discrete  and the parameter  space is  continuous,  then that  stochastic  process  is  called

continuous time Markov chain so this is the definition. Now we are going to give some

more properties over the continuous time Markov chain and some simple examples as

well as the I am going to explain the limiting distribution and the stationary distribution

for continuous time Markov chain in this lecture.
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Let me show the sample path over the time t, that is, x axis the y axis is X of t. So, the

system was in some state at time point 0. It was in the same state for some time then, it

moved into the some other state. Then it was there in that state for some time then it

moved into some other state and so on.

If you see the sample path, the following observation the system can stay in some state

for some amount of time after that it will move to the some state.



So, there is no equal interval of a system going to be in some state also, it can be some

positive  amount  of  time the  system can be in  the  some discrete  states.  So,  here  the

observations are, the state space is discrete. Whereas, the parameter space is continuous

and the time spent in each state that is going to be some positive amount of time before

moving into any other states.

So, this is the observation in the sample path which I have drawn.
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Now, I am going for few notations to study or to study the behavior of a continuous time

Markov chain. Whenever the Markov chain that means, a here it is a continuous time

Markov chain.  It  is  at  time homogeneous then,  the conditional  probability  of system

being in the state j at time point to t plus capital T, given that the capital T it was in the

state i that does not depend on capital T.

Here we assume that the state changes from i to j at a future time point t plus capital T.

This transition probability says the system was in the state i at the time point t. Let me

draw the simple diagram.
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The system was in the state i at the capital T, then what is the probability that the system

will be in the state j, what is the probability that the system will be in the state j at the

time point T plus t. It is independent of capital T whenever, the Markov chain is going to

be a time homogeneous, for any t greater than or equal to 0; that means, the actual time

does not matter only the length matters.

The length of the transition time; that means, the small t is matters not the capital T.

Whenever, it is at time homogeneous, that is, that we can denote it as a P i j of t because

it depends on only the interval not the actual time. Therefore, it is a function of small t P i

j of t; that means, that is the transition probability the system.

So, the same thing can be written as the P i j of t, this is a notation. What is the transition

probability that the system was what is the probability that the system will be in the state

j given that it was in the state i time 0.

Since it is valid for any interval of t to T plus t, it is independent of capital T. Therefore, I

can represent this kind of transition probability as a probability that the system in the

state j a time t given that it was in the state i at time 0. This denoted by P i j of t.

So, this notation you should remember. It is a transition probability with the suffix 2 let

us i comma j of t this also call it as a stationary transition probability. Stationary means,

it is at time invariant only the length of the interval is matters.



Similarly,  I  am denoting  the  next  notation  P i  j  of  t.  The  P j  of  t  is  a  conditional

probability. Whereas, a the P i j of t that is unconditional one what is the probability that

the system will be in the state j at time t. There is a possibility system would have been a

coming to the state j before time t for time 0 itself or it would have come before just

before t whatever it is. This probability will give the interpretation what is the probability

that the system will be in the state j at time t only it gives the information at the time t,

this is a unconditional probability.

I need a another notation for a initial state probability vector also that is, a pi naught. Pi

naught is a vector which consists of entities what is the probability that the system was in

the state 0 a time 0. Therefore, this I can write it as pi j of 0 that is nothing, but what is

the probability that the system was in state j at time 0.

So, this is the meaning of pi j of 0. What is a probability that the system will be in the

state sorry the system was in the state j at time 0 that is pi j of 0 like with these entities,

you are framing the vector that is, pi naught. So, in these we are giving a 3 notations.

One is the transition probability P i j of t; that is, a conditional probability. The other one

is unconditional probability that is P i j  of t and the initial  state probability vector pi

naught.
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Using these, I am trying to find out what is the distribution of x of t for any time t for any

time t x of t will form make a stochastic process. Here, it is a continuous time Markov



chain. The default one is a time homogeneous a continuous time Markov chain and our

interest is to find out what is the distribution of the random variable x of t.

It has the probability mass function that is pi j of t and if you make a summation over S,

where S is the state space that summation is going to be 1.

If I know the initial probe initial state probability vector with the entities pi i of 0 as well

as ah, if I know the transition probability of system moving from the state i to j from 0 to

small t, I can able to find out what is the probability mass function of system being in the

state j at time t.

That is and pi j of t that is same as probability that x of t is equal to j, that is same as I

can make a summation I can make a conditional what is the probability that the system

will be in the state j at time t given that it was in the state i multiplied by what is the

probability that a system was in the state i at time 0.

For all possible values of i, where S is big, S is nothing but the state space. I know that a

pi sorry I know that the probability of x of 0 is equal to i that is same as pi i of 0 and this

transition probability since the Markov chain is at time homogeneous. So, 0 to t that is

nothing, but 0 to 0 is the time point and it is any time point and i is the state in which the

system was in the state in the at time 0 so P ij of t.

If I multiply pi i of 0 P i j of t for all possible values of i, I will get the probability that the

system will be in the state j at time t. That means, if you want to find out the distribution

of x of t for any time t, I need a initial state probability vector as well as the transition

probability of system moving from one state to other states. This is given usually the

initial state probability vector is given. So, what do we want to find out this P i j of t. So,

how to find the P i j of t? That derivation I am going to do it in the another 2 3 slides.


