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Now, we will move into the third lecture that is called the Central limit theorem. 

(Refer Slide Time: 00:06)

So, this is a very important result in probability that is central limit theorem which has

the wide application in many real world problems. Therefore, this theorem will be used

again and again in many problems.

So, let me give the central limit theorem first, then I give the proof; then we will go for 1

or 2 examples of how to use the central limit theorem in the real world problems. Let me

give  the  theorem first.  Even  though,  there  are  many  versions  over  the  central  limit

theorem,  first  we  will  get  the  easiest  version;  because  it  is  a  introduction  to  the

probability  theory and stochastic  process course.  If  the course is  advance probability

theory course, then we can go for 2 3 levels of a central limit theorem.

So, here we will present only the simplest version of the central limit theorem; whereas,

we will discuss how the complicated version in the central limit theorem after I give the

proof  of  the simplest  one.  So, we will  give the simplest  version of the central  limit



theorem. Let omega F capital  P be a probability space, let  X 1, X 2 and so on be a

sequence of iid random variables defined on omega F capital P.

Assume that assume that expectation of Xi that is equal to mu and variance of Xi that is

equal to sigma square which is greater than 0 for i is equal to 1, 2 exist; that means, we

make sure that this sequence of random variables are iid as well as at least second order

moment exist and the variance of each random variable is greater than 0. 

Since I made it iid random variable, the sigma square is greater than 0 and also the finite

quantity. And defining, defining the new sequence of random variable I call it as a Z

suffix n that is nothing but sum of n random variables minus expectation of this sum of

random variables divided by square root of variance of sum of these n random variables.

I am defining a sequence of random variable for n is equal to 1 2 and so on. 
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What the central limit theorem says then, what the central limit theorem says, then for

larger n, Zn approximately standard normal distributed random variable. Then for larger

n, Zn approximately standard a standard normal distributed random variable; that means,

that is the probability of Z n less than or equal to small z; approximately minus infinity to

z, 1 divided by square root of 2 pi e power minus t square by 2 d t.

This is valid only for larger n that is very important and that to the cdf, CDF further a

random variables Z approximately the integration from minus infinity to Z, 1 divided by



square root of 2 pi e power minus t square by 2 d t that is nothing but the cdf of standard

normal  distribution.  This  is  valid  as  long as  X is  or  as  long as  X is  or  iid  random

variables defined and a probability space with at least second order moment exist and

variance is greater than 0. And then, making a sum of random variables there my there

minus there mean divided by the standard deviation that is approximately a standard

normal distributed random variable for larger n.

Indirectly whenever you have a normal distribution with the parameters mu and sigma

square; by subtracting the mean divided by the standard deviation that becomes standard

normal distribution. So, the same thing we are applying in the Z n. The random variable

is a sum of random variable that is a 1 random variable for fixed n minus their mean

divided by the standard deviation; that means, this transformation is the transformation

from normal distribution to the standard normal.

That means, indirectly when we say when we say Z n approximately a standard normal

distributed random variable, indirectly what we are saying the sum of n random variable

approximately  a  normal  distributed  random  variable  with  mean  expectation  of  that

random variable with the variance, variance of sum of random variable for larger n.

That is a meaning of a Z n approximately a standard normal distributed normal variable

that is equivalent of a sum of random variable is approximately a normally distributed

random variable  with  the  mean is  expectation  of  a  sum of  random variable  and the

variance is variance of sum of random variables.  And here the assumptions are very

important  it  should be iid random variables with the at  least a second order moment

exist. 

Now, we will go for proof of this theorem. For the proof we will make the assumption

that m g f of each Xi exist; even though for some random variable m g f may not exist

and here we made the assumptions only at least second order moment exist, that does not

mean that m g f for moment generating function of each Xi is exist.

We make the additional assumption of m g f exist, then later we will relax the m g f exist

then we can give the proof of it. So, without loss of generality we assume that m g f of

Xi is exist for all the random variable because all are iid random variables. With that

assumption will give the proof, later we can relax this also. 
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Let us go for finding out the m g f of Z n as a function of t moment generating function

for the random variables Z n as a function of t that is nothing but expectation of e power

sum of random variables 1 to n. Since we made a all are iid random variables, their mean

is going to be mu n times mu divided by variance of sum of random variables; each

random variable variance is sigma square. Therefore, sum of random variables is n sigma

square. Here, you need a square root of variance; therefore, square root of n sigma as a

function multiplied by t. 

So, this quantity is going to be the m g f of the random variable Z n. This is possible as

long as the m g f of Xi exist. Therefore, you made the assumptions m g f exist that is

same as all the constant you can take it out. Therefore, it is going to be exponential of

minus n times mu t divided by square root of n sigma multiplied by expectation of e

power 1 divided by square root of n sigma.

Then the summation of Xi is 1 is equal to i is equal to 1 to n times t. This is same as e

power minus square root of n mu t divided by sigma.
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You can use the expectation of e power summation of X is t that is nothing but the all are

iid  random variable.  Therefore,  you can go for expectation of e  power 1 divided by

square root of n sigma for 1 random variable X 1 t. 

After getting the expectation you can raise e to the power n because all are independent

as well as identical that is same as e power minus square root of n mu times t by sigma.

This is nothing but m g f of the random variable X 1 instead of t, you can write t divided

by square root of n sigma, both are on the same; whether you write m g f of 1 divided by

square root of n sigma X 1 of t or m g f of X 1 t is replaced by t divided by square root of

n sigma, both are 1 and the same; this power n because of identical. 

Now, we need the expansion of m g f for any random variable; then, we can substitute

that, we know that.
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We know that  m g f  of  any random variable  X can be written  as 1 plus mu t  plus

expectation  of  X  square  t  square  by  2  factorial  and  so  on;  again,  you  can  write

expectation of X square as variance of X. Suppose variance of X is sigma square plus mu

whole square. So, one can write expectation of X square as a sigma square plus mu

square; I am going to substitute little later by taking a logarithm of m g f of X t, I can use

l n of 1 plus X as X minus X square by 2 plus X cube by 3 and so on provided mod X is

less than 1. I can use this identity for the l n of m g f of X is the l n of 1 plus mu t plus

expectation of X square t square by 2 factorial and so on.

So, I can make it as the l n of 1 plus all the other term, I can make it as the sort of X mu t

plus expectation of X square t square by 2 factorial and so on. This I can keep it as a 1

plus X 4. So, I have not substituted l n of 1 plus X now, I am just writing l l n of the

whole series as the 1 plus remaining terms as the X. 

Now, I am going to apply the same logic for the m g f of Z n; that means, now l n of m g

f of the random variable  Z n of t  that is  going to be when you take a logarithm,  it

becomes minus square root of n mu t by sigma. Then, the remaining terms with the

power; therefore, it becomes n power n becomes n times l n of 1 plus mu. Here, t is

replaced by t by square root of a n sigma plus expectation of X square is sigma square

plus mu square times t square by 2 factorial n sigma square and so on. This is going to be

minus square root of n mu t plus sorry divided by sigma plus now I am going to apply l n



of 1 plus X that is n times it is X minus X square by 2 plus X cube by 3. So, X is going to

be this.

So, the first terms in the X that is mu t divided by divided by square root of n sigma plus

sigma square plus mu square t square divided by n sigma square 2 factorial is 2. I am not

going to write other terms of X limit as it is, whereas now I am going to write minus X

square by 2 terms that is minus 1 by 2 times.
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In the X square also I am not going to write X square of all the terms, I am going to write

the X square of only first term that is mu square t square by n sigma square; all the other

terms I leave it as it is. There is a reason behind that; I am not going to write other terms

of X square. 

Similarly, I am not going to write any terms for the X cubes, only I write 1 by 3 all the

other  term as  it  is.  Like  that  there  are  some  more  terms  some  more  terms  for  the

expansion of l n of 1 plus X. This is going to be close bracket. The reason is as n tends to

infinity, even though I  use a word for larger  n here,  we are going for as n tends  to

infinity. The n in the numerator and many terms in the n in the denominator that canceled

and the all the other terms will be in the form of 1 divided by n; not only that this one

and this one cancel. Whereas, the sigma square plus mu square t square this one with the

first term here that cancels. 



So,  the  left  out  is  sigma square  t  square  divided  by  2  n  sigma square  that  will  be

cancelled with n in the numerator. So, you will have a only sigma square t square by 2

sigma square sigma square also cancel. So, you will left out with t square 2. Even though

we have many more terms as n tends to infinity all the other terms vanish. So, you will

have a as n tends to infinity l n of m g f of Z n is going to be t square by 2; all the other

term vanishes as  n tends  to  infinity. Now, I  am taking a  exponential  both side;  that

means, m g f of Z n that is going to be e power t square by 2. If you recall the generating

function  for  the  standard  distributions  waves  discuss  for  many discrete  type  random

variables.

Similarly, we have discussed continuous type random variables m g f. So, if you compare

the m g f of this with the m g f of standard distribution, you can conclude the you can

conclude by using the uniqueness theorem of 2 different m g f s are same for all t, then

both the random variables are identically distributed. So, you can conclude the Z n is

standard normal  distribution.  So, this  is  valid  for n tends to  infinity;  that  means,  for

larger n the Z n approximately a standard normal distribution that is a proof. In this proof

we have made assumption of m g f of exist. 

Now, we can see what could be the proof or how the proof goes when you do not have a

assumption of m g f. The similar derivation I can go for characteristic function. So, the

characteristic function of Z n of t that is going to be expectation of e power the whole

expression t, where t is replaced by i times t, where i is square root of minus 1. For that I

do not need any assumption because the characteristic function exist for all the random

variables; therefore, the characteristic function for Z n exist. So, I can directly compute

the characteristic function of Z n.

In  this  result  wherever  the  t  I  have  to  replace  by  I  times  t  that  is  going  to  be  the

derivation of characteristic function. So, if I do the same derivation everything goes in

the same fashion because I keep iid random variables mean is mu variance is sigma

square and so on. Therefore, wherever there is a t it will be replaced by i times t. So, that

will be cancelled wherever there is a t square that is going to be minus t square because it

is going to be i square t square i square is minus 1. After you do the simplification till the

as  n  tend  to  infinity,  you  will  get  the  answer  minus  t  square  by  2  for  the  l  n  of

characteristic function of Z n; that means, the characteristic function of Z n is going to be

e power minus t square by 2 that is there result for the characteristic function for standard



normal distribution, then we can conclude also Z n is approximately a standard normal

distribution. 

So, whether we made the assumption m g f or not the derivation is almost similar way to

conclude that it  is approximately a standard normal distribution. I said I am going to

discuss the little higher versions of the central limit theorem.
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Yes, see the theorem carefully I have made iid random variable. Suppose, if it is not

identical distributed then you can find what are all the changes; that means, if each X is

or not a identically distributed, then their mean will be mu is variance will be sigma i

squares;  that  means,  each  one  may  have  a  different  means.  Still  you can  apply  the

theorem because Z n is going to be sum of random variable minus their mu.

So, whatever the mean mu i’s, you add all them mu i’s, find out the summation of mu i’s;

that is going to be the expectation. In this theorem, when they are identical it becomes n

times mu if they are not identical. Then it becomes mu 1 plus mu 2 plus so on mu n.

Similarly, the denominator here it is a square root of square root of n sigma, but if they

are not identical, then you will have a sigma 1 square plus sigma 2 square and so on

square root of that. 

Still the derivation goes, but we cannot apply the power n. We cannot apply the power n

the way we have done it here because of identical we got power n. So, when you go for



derivation for non identical distributed random variable you have a individual m g f in

the product form.

So, when you take a logarithm and so on, the expression will be huge. The process of a

derivation may be tedious, but still  as n tends to infinity you can conclude the same

result. The derivation may be very complicated when they are non identically distributed,

still we can go for it the same derivation.

One more observation, here we have use the independent random variable in finding the

square root of variance of sum of random variables. Since all the random variables are

independent  the  variance  of  sum  of  random  variable  is  nothing,  but  the  individual

variances summation. If they are not independent, then you have to go for adding the

covariance of any 2 random variables.

So, since we mean the assumption there independent random variable we are finding the

individual variance, then we are sum it up; that is going to be the variance of sum of

random  variables.  Otherwise  you  have  to  co  use  the  covariance  of  any  2  random

variables; that means, we can relax instead of they are independent random variable you

can make the assumptions all the random variables covariance of any 2 random variables

0, that is enough.

You  do  not  need  a  independent  assumption.  Independent  is  a  strongest  assumption

comparing to the covariance of any 2 random variables are going to be 0 because the

covariance of any 2 random variable 0, that does not imply they are independent. But if 2

random variables  are  of  some  random variables  are  mutually  independent,  then  the

covariance of any 2 random variables are going to be 0.

So, here in this  theorem, I made a strongest condition;  therefore,  this is the simplest

version of central limit theorem. Whereas, we can go for covariance of any 2 random

variables are 0 that is enough to use the central limit theorem. One more observation

over this central limit theorem, why this is a used in many situations?.

You  see  the  theorem  very  carefully,  we  have  not  used  any  distribution  for  random

variables Xi’s and we have used the only the mean and variance of random variables and

assumption of independent nothing else. Because of that this theorem is used in many

real  world  problems;  that  means,  many real  world problems many random variables



which we have created, those random variables we may not know the distribution of that.

We may not know the distribution of those random variables, but we may know the mean

and variance as a numbers.

We may know mean and variance of those random variables, even they are dependent or

the dependency maybe very very minimal or we can ignore the dependency or we can

make the usage of those random variables or independent or in the lighter sense we can

use the concept of covariance of those 2 random variables are 0 with that assumption we

can use this theorem. So, the big advantage of this theorem is there is no assumption over

the distribution or we do not need the distribution of each Xi’s; we need only the mean

and variance.

Therefore, we can use this theorem to find out the probability of event using a standard

normal  distribution  by  approximating  this  random  variable  as  a  standard  normal

distribution. That means, whatever be the distribution of those random variables. Once

we sum it up by subtracting there mean divided by the standard deviation for larger n we

can always approximate in material of whether it is a discrete type random variable or

continuous type random variables.

As long as there independent random variable, that can be approximated with a normal

distribution; by normalizing it can be approximated with a standard normal distribution.

Therefore, we use this theorem quite a lot in many real world problems.

Now, let us go for a few examples how 1 can use the central limit theorem.


