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So, we are in Limiting Distributions model. In this model we have already discussed

modes of convergence. In that we have discussed 4 different modes of convergence. First

1  is  convergence  in  distribution,  convergence  in  probability,  convergence  in  art

movement, convergence almost surely.

In this lecture, we are going to discuss law of large numbers. In that we are going to

discuss two types of law of large numbers; 1 is called Weak law of large numbers.
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Then later, we are going to discuss strong law of large numbers. 

Let me give the definition of weak law of large numbers. As a theorem, let X 1, X 2 and

so on X n and so on, be a sequence of iid random variables with mean mu and finite

variance sigma square. That means, this sequence of random variable has a at least a

second order movements.

Then for any epsilon greater than 0, we have probability of absolute of X 1 plus X 2 plus

dot dot dot plus X n divided by n minus mu greater than epsilon. This probability is



always less than or equal to sigma square divided by n epsilon square. Also, limit n tends

to infinity probability of the event that is absolute of X 1 plus X 2 plus so on plus X n

divided by n minus mu which is  greater than epsilon.  This becomes 0 as n tends to

infinity.

Then, we say that this sequence obeys weak law of large numbers. Here, large numbers

means the sequence of random variables. When you have a many random variables and

if you create sum of random variables divided by n minus the mu, in absolute sense

greater than epsilon the probability of that event will tends to 0 that is what this weak law

of large numbers says.

For that you need a sequence of random variable should have a at least second order

movement;  that  means,  mean  exist  as  well  as  the  variance  exist  and  we  made  the

assumptions those random variables are iid random variables; that means, independent

and identically distributed random variable.

Therefore, the means are going to be same and the variance is going to be same. Then for

any epsilon you can have a limit n tends to be infinity probability of event in absolute

sense summation divided by n that is nothing but X bar which we have denoted earlier

minus mu which is greater than epsilon is equal to 0.

If this condition is satisfied,  then we can conclude  this sequence of random variable

obeys  weak  law of  large  numbers.  Why it  is  called  a  weak  law of  large  numbers?

Because if you see the different modes of convergence, you can conclude if you make a

notation X bar is equal to X 1 plus X 2 and so on plus X n by n.
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This result is nothing but limit n tends to infinity probability of in absolute sense X bar

minus mu greater than epsilon that is equal to 0. If you see the definition of different

modes of convergence, this is nothing but X bar converges to mu in probability.

So,  since  here the  convergence  in  probability  we call  it  as  this  sequence of  random

variable obeys a weak law of large numbers. Whereas, when we are discussing a strong

law of  large numbers,  those  sequence of  random variables  convergence  to  the  some

random variable and convergence in almost surely that is a strong law of large numbers;

whereas, this one satisfies a convergence in probability.

Therefore, it is called the weak law of large numbers. We are not going to give the proof

of this where as we are going for one Bernoulli law of large numbers that is a special

case of the weak law of large numbers for that we will provide the proof.



(Refer Slide Time: 06:50)

That  is  a  next  theorem that  is  a  Bernoulli  Bernoulli’s  Law of  Large  Number  large

numbers.

Let,  X 1 X 2 and so  on be  a  sequence  of  iid  random variables  having  a  Bernoulli

distribution with parameter P. Then for any epsilon greater than 0, we have probability of

absolute of X 1 plus X 2 dot dot dot plus X n divided by n minus P which is greater than

epsilon. This probability of event is always less than or equal to 1 divided by four times n

epsilon square. This is a special case of the earlier theorem. 

If you see the earlier theorem, the weak law of large numbers we have a sequence of iid

random variables with the mean mu and the finite variance, then we concluded as n tends

to infinity the X bar converges to mu and converges takes place in probability. In the

Bernoulli’s  law  of  large  numbers  in  addition  to  the  previous  theorem.  We  have

introduced the distribution of each random variable that is Bernoulli distribution with the

parameter P.
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We are going to give the proof of this theorem as follows. Consider an event A whose

probability is probability of A is P, where A is the success in each Bernoulli trial. A is the

event in a each Bernoulli trial and the P of A, the P is nothing but probability of success

in  each  Bernoulli  trail.  Since,  each  Xi’s  are  Bernoulli  distributed;  therefore,  the

probability of Xi takes a value 1; that probability is that is P of A that is a event that is

probability is P and the probability of Xi takes a vales 0 that is 1 minus P. This is for i is

equal to 1, 2 and so on.

So, if you define a random variable X bar that is nothing but 1 divided by n summation

of Xi’s. We can find mu and variance of this random variable. The mean of this random

variable is 1 divided by n and summation of i is equal to 1 to n mean of each random

variables; each 1 is Bernoulli distributed.

Therefore, the mean is going to be P; therefore, summation of n P. Therefore, divided by

n; therefore, it is going to be P. If you find out the variance of X bar that is nothing but 1

divided by n square, all are iid random variables. Therefore, it is summation i is equal to

1 to n variance of Xi’s. Variance of Xi is a sigma square; therefore, it is going to be n

sigma square when you make a summation. So, it is going to be sigma square by n. So,

we got the mean and variance for the X bar.

Now, we may not know the distribution of X bar;  whereas,  we know the mean and

variance of X bar. Therefore, we can apply the Chebyshev’s inequality.
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Apply Chebyshev’s Inequality for the random variable X bar. So, what the inequality

says? The probability of in absolute sense X bar minus their mean which is an greater

than or equal to epsilon that is less than or equal to variance of a X bar divided by

epsilon square.

So, just now we got variance of a X bar is sigma square by n; therefore, the probability

of absolute of X bar minus P which is greater than or equal to epsilon that is going to be

less than or equal to sigma square by n epsilon square. That means, the probability of X

bar minus P that probability has the upper bound sigma square by n epsilon square or we

can write the probability of the X bar minus P which is less than epsilon; that has the

lower bound 1 minus sigma square by n epsilon square. Since, P is sigma square is P into

1 minus P; therefore, it is P into 1 minus P divided by n.

Therefore, here also I can do the simplification, where variance of that is P into 1 minus

P by applying the Chebyshev’s Inequality  probability  of the event  in absolute  X bar

minus P greater than or equal to epsilon is less than or equal to variance of X bar divided

by epsilon square. We know that each Xi’s are Bernoulli distributed and variance of X

bar is going to be P into 1 minus P divided by n times epsilon square or the probability of

absolute of X bar minus P less than epsilon is going to be have a greater than 1 minus P

into 1 minus P n epsilon square.
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Here also we can go for as a n tends to infinity the limit n tends to infinity probability of

absolute of X bar minus P which is greater than or equal to epsilon that is going to be 0;

that means, the X bar tends to P convergence in probability. That means, for a larger n for

a Bernoulli distributed random variable X bar 1 divided by n summation of Xi is nothing

but the relative frequency.

So, the relative frequency converges to the theoretical probability; that is the theoretical

probability. If you have a independent Bernoulli trials for a finite n the relative frequency

may deviate from the theoretical probability, but for a larger n that the relative frequency

will  converge  to  the  theoretical  probability  and  that  convergence  take  place  in

probability. 

Let us go for one simple problem, how to use the Bernoulli law of large numbers as a

example.
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The random experiment is rolling a dice. For simplicity we assume that it is the fair dice.

A event A is getting a number 5; getting number 5. Event A is nothing but the getting a

number 5. We are repeatedly rolling a dice countably infinite number of times and the

question is for a given for a given epsilon that is 0.01 what is the minimum number of a

Bernoulli trials such that the probability of absolute of X bar minus P which is lesser than

epsilon is going to be greater than 0.95. 

The random experiment is rolling a dice countably infinite number of times. The event A

is a getting a number 5 in each Bernoulli trial. The question is for a given epsilon, what is

the minimum number of Bernoulli trials such that probability of absolute of X bar minus

P which is less than epsilon is greater than 0.95? That means, a minimum how many

number of times we have to roll a dice for getting minimum probability of a 0.95 within

the length of epsilon which is deviated from the P. 

For this  problem the P is  nothing but the probability  of success of a event  A that is

getting a number 5 in each Bernoulli trial that is a 1 out of 6; I made it fair dice therefore,

it is 1 by 6 that is P. So, we know P and we know the value of epsilon; therefore, you

apply in the Bernoulli law of large numbers because we have a iid random variables,

each are having a Bernoulli distributed with a probability of success P is 1 by 6.

So, the question is sort of reverse problem inverse problem finding the n such that this

condition is satisfied. 
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That means, probability of absolute of X bar minus 1 by 6 lesser than epsilon; epsilon is

0.01; this has to be greater than 0.95; if you simplify your X bar is here that is X 1 plus

so on plus X n by n; therefore, if you compare this with the definition of probability of X

bar minus P lesser than epsilon that is going to be greater than 1 minus P into 1 minus P n

epsilon square. 

So, now you compare equation number 1 with the 2; compare 1 and 2 we get n should be

greater than or equal to P times 1 minus P divided by 0.05 into 0.01 the whole square;

where, P is 1 by 6. If you simplify you will get 27778, we are finding the nearest positive

integer.

That  means  the  n  has  to  be  minimum 27778  valid.  That  means,  if  you  roll  a  dice

minimum a 27778 times we are going to attain the relative frequency deviation from 1 by

6 with the length of 0.01; probability of this event is going to be minimum point or the

probability of this event is at least 0.95. So, for that the number of trials are needed is

minimum 27778. 
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Now, we will move into the second law of large numbers that is a Strong Law of Large

Numbers. Let me give the definition, the form of a theorem. Let X 1 X 2 and so on be a

sequence of iid  random variables  with the finite  mean mu and finite  variance sigma

square.

Then, X 1 plus X 2 and so on plus X n divided by n will converge to mu almost surely.

We can define X 1 plus X 2 plus X n divided by n as the X bar. So, X bar if I define X

bar as this X bar converges to mu almost surely.
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Where, X bar is a X 1 plus X 2 plus X n by n; that means, if you have a sequence of

random variables all are iid having a at least second order movements, then adding all

those  random  variables  divided  by  n  that  is  nothing  but  the  average  of  n  random

variables  converges  to  the  mean  of  these  random  variable  that  is  mu  and  that

convergence takes place in almost surely.

That means, probability of the limit n tends to infinity of X bar is equal to mu that is

equal to 1. Limit n tends to infinity X bar is equal to mu that is equal to 1. That means, if

you collect the possible outcomes in which X bar of w is tends to mu and if you collect

those possible outcomes, whose probability put together is going to be 1.

Then we can conclude X bar converges to mu almost surely. So, without proof we are

giving the strong law of large numbers. And, why the word strong law of large number is

here? The convergence in almost surely that is the strongest one; whereas, the weak law

of  large  numbers  involves  convergence  in  probability.  That  is  a  weak  law of  large

numbers whereas, the convergence in almost surely that is going to be calling it as a

strong law of large numbers.


