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So, we have discussed covariance variance matrix then we have discussed, as a example

we have discussed the discrete type random variable. Now we are going to discuss one

continuous  type  random variables  in  which we can  describe  the  covariance  variance

matrix in a nice way. That is one very important multidimensional random variables of

continues  type  that  is  called  multivariate  normal  distribution  which  has  a  lot  of

applications.
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 The way the central with there on which we are going to discuss later which has lot of

applications in the real world problems he same way the multivariate normal distribution

also going to play important roles in many complicated problems in probability.

Let X be a vector whose elements are X 1, X 2 and so, on it is a n dimensional random

variables  are  of  continuous  type;  with  each  random  variable  X  i  follows  a  normal

distribution with the mean mu i and the variance in sigma i square; for i is equal to 1 to n.

Then we call the random variable X as the multivariate normal distribution whenever

each random variable is normal distributed at random variable, then the n dimensional



random  variable  is  going  to  be  call  it  as  a  multivariate  normal  distributed  normal

variable.

Then we can define the joint probability density function, the joint probability density

function of the random vector capital X whose elements are X 1, X 2, X n is given by X

is the vector that is 1 divided by 2 pi power n by 2 multiplied by the determinant of the

covariance variance matrix, the whole power minus 1 by 2 multiplied by exponential of a

minus 1 by 2 x minus mu multiplied by the covariance variance matrix with the inverse

multiplied by x minus mu the whole transpose.
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Where the mu is a vector that is a expectation of the vector; that means, whose element

are expectation of X 1, expectation of X 2 and so, on the n th element is expectation of X

n;  mu  is  the  vector  whose  elements  are  the  expect  individual  expectations.  And

summation is a positive definite matrix. It is the covariance variance matrix of the n

dimensional random vector X 1, X 2, X n; that means, whose elements are the diagonal

elements are variance and off diagonal elements are covariance between any 2 random

variables which is denoted by sigma 1 2. Since sigma 1 2 is same as sigma 2 1; so, both

we write it as a sigma 1 2 and the last element is sigma 1 n.

Here the first element is sigma 1 n where sigma i j is nothing, but the covariance of X i

with X j. When i and j are same them it becomes a variance of i; variance of the random



variable X i. So, the joint probability density function can be written in the form where

am use the vector and sigma is the matrix and similarly small x is also vector.
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For example, when n is equal to 2 we call it as a bivariate X as elements X 1, X 2 that is

called a bivariate normal distributed random variable, we call it as a bivariate normal

distribution. In that case the mu is going to be mu 1 comma mu 2 where mu 1 is nothing,

but  expectation  of  X  1  and  mu 2  is  nothing,  but  the  expectation  of  X  2.  And  the

summation matrix that is covariance variance matrix is nothing, but variance of X 1,

covariance of X 1 X 2, covariance of X 1 X 2 and variance of X 2; that is sigma 1 square

covariance of X 1 with X 2 covariance of X 1 with X 2 and variance of X 2.
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Now, the joint  probability  density  function will  be much simplified  that  is  f  of X 1

comma X 2 whose elements are x 1 and x 2 that is nothing, but 1 divided by 2, 2 pi

power n by 2 n is 2 here. Therefore, 2 pi and determinant of some matrix raise 2 to the

power minus 1 by 2 and exponential of multiplied by exponential of minus 1 by 2 x

minus mu summation inverse x minus mu transpose.

So,  we  find  out  each  quantity  separately  determinant  of  summation  matrix;  if  you

simplify you will get sigma 1 square sigma 2 square and covariance of X 1 and X 2;

since we have only 2 elements we can make it as a rho therefore, it is going to be 1

minus rho square. Similarly, if you find out the inverse of covariance variance matrix

that  is  going to  be 1 divided by variance  x 1 x2 multiplied  by 1 minus rho square

multiplied by 2 is the correlation coefficient correct; sigma 2 square minus sigma 1 2 that

is covariance of x 1 with x 2 minus x 1 with x 2 sigma whole squared.

Therefore, you substitute in the joint probability density function therefore, f of x 1 with

x 2 that is going to be 1 divided by 2 pi sigma 1, sigma 2 multiplied by square root of 1

minus rho square; exponential of minus 1 by 2 times 1 minus rho square multiplied by x

1 minus mu 1 divided by sigma 1 the whole square minus 2 times rho x 1 minus mu 1 x 2

minus mu 2 divided by sigma 1 sigma 2 plus x 2 minus mu 2 divided by sigma 2 the

whole squared this is in the curly bracket this closed bracket.
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So, this is the joint probability density function of bivariate normal distribution in which

each one is a normal distributed with the parameters mu 1 comma sigma whole squared.

Here there is another observation, we are not making the assumption of both the random

variables  are  independent.  If  they  are  independent  then  the  correlation  coefficient

becomes 0; then we would have the middle term. So, this term will vanish; so, you will

have first term as well as the third term. Similarly when the rho square is becomes 0 then

square root of 1 minus rho square would not exist.

So, when they are independent random variable then easily you can write as the product

of 2 probability density function of a normal distributed random variable. But immaterial

of both the random variables are independent; we can get the marginal distribution of the

random variable X 1.
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From the joint you can always get the marginal by integration with respect to the other

variable; that is minus infinity to infinity the joint probability density function of x 1 x 2

with respect to x 2. If you simplify you will get the answer that is 1 divided by square

root of 2 pi sigma 1 exponential of minus 1 by 2 x by x 1 minus mu 1 divided by sigma 1

square. So, this is the original distribution of the random variable x 1.

Similarly, you can find the marginal distribution of X 2 by integration with respect to X 1

of joint probability density function. So, that is going to be 1 divided by square root of 2

pi sigma 2 exponential of minus 1 by 2 x 2 minus mu 2 divided by sigma 2 the whole

square. By seeing the probability density function, you can make out this is a normal

distribution with the mean mu 1 and the variance sigma whole square for the random

variable x 1. Similarly for the random variable x 2 it is also normal distributed with the

mean mu 2 variance sigma 2 square. Whereas, the joint one is given as this is the joint

probability  density  function  of  bivariate  normal  distribution.  So,  this  is  a  very good

example of how the covariance variance matrix play a role.

So, we have discussed earlier in the discrete type now we are describing the continuous

type random variable.  As a example for described in the covariance variance matrix,

there is another important observation in the joint probability density function of normal

distribution. If you substitute rho equal to 0 that is a correlation coefficient that is 0, you

will get the first term and the third term in that we can come to the conclusion you will



get joint probability density function of x 1 x 2 is same as the product of probability

density function of x 1 x 2..
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That is when rho is equal to 0; the joint probability density function of bivariate normal

distribution is land up the probability density function of a normal distribution in the

product.

This is a very important result in the sense when rho is equal to 0, that is a correlation

coefficient is 0 we are getting a independent relation. If they are independent then the

joint  probability  density  function  is  going  to  be  the  product  of  probability  density

functions.

Usually  or  in  general  the  correlation  coefficient  is  0  that  does  not  imply  they  are

independent  random  variable  whereas,  independent  random  variable  implies  the

correlation coefficient or covariance between any 2 random variables going to be 0; the

converse is now rho in general, but for the normal distribution the converse is also true.

That means, the covariance between any 2 random variables or the correlation coefficient

between those 2 random variables are 0 implies those random variables are independent.

So,  this  is  a  very  important  result  the  if  and  only  if  condition  for  the  correlation

coefficient  0  and  independent  are  going  to  be  satisfied  only  for  normal  distributed

random variable.


