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We are moving into the next  important  result  of finding variance of sum of random

variables.
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 Next definition that is let X 1, X n be a n random variables having finite variances; then

one can define variance of sum of random variables from i is equal to 1 to n let X 1, X 2,

X and be a n random variables, having a finite variances; that means, first and second

order moment exist and it is finite.

Then we are defining the sum of random variable that is going to be individual variance

plus the double summation over covariance between any 2 random variables provided i

and j  is  not  equal.  That  is  a  variance  of  sum of  random variable  is  the  variance  of

individual random variable with summation plus covariance of any 2 distinct random

variable that is going to be the variance of sum of random variable.

This can be rewritten,  this can be rewritten that is summation of i is equal to 1 to n

variance of each random variable.
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Since using the result number 2 covariance of X comma Y that is a means covariance of

Y comma X; that means, the second summation can be rewritten in the form of a 2 times

double summation. Covariance of X i with X j; now the condition is instead of i is not

equal to j  I can write i is less than j because we have put the 2 times. So, both the

statements are one and the same.

Here  also  we  can  go  for  one  special  case,  suppose  X  i’s  are  independent  random

variables independent, when I say independent random variables; that means, they are

mutually independent random variable. In that case we can use the previous result that is

result number 5.
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Well  any 2  random variables  are  independent  then  the  covariance  is  going  to  be  0.

Therefore, the second the summation whole thing; it will not come therefore, variance of

sum of a random variables is same as sum of variance of individual random variables

when X i’s are mutually independent random variables.
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Now, we will give the definition of a expected value of a random vector; we have already

given the definition of expected value of function of random vector. Now we are going to



give the definition of expected value of a random vector;  let  X 1,  X 2,  X n be a  n

dimensional random variables.

The expected value of ; let me denote this random vector in the form of capital X, let me

denote X 1 X 2 X n random vector with a notation capital X. So, I am going to define the

expected value of the random vector capital X, which is denoted by expectation of X is

defined as; it  is defined as expectation of X is nothing, but since X 1, X 2, Xn’s are

vector the expected value of X is also going to be vector; whose elements are expectation

of X 1, expectation of X 2 and so, on expectation of X n.

We are finding the expected value of a random vector therefore, that is also going to be a

vector whose elements are expected value of individual random variables; provided the

expectation of X i’s exist for i is equal to 1, 2 n. So, as long as a individual expectation

exists one can define expected value of a random vector with the elements is X 1, X 2,

Xn. In the same way we are going to create a matrix whose elements are variance and the

covariance between any 2 random variable that is a next definition.
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The next definition is covariance variance matrix; let capital X it is a random vector for

the random variables X 1 X 2 and so, on; X n be a random vector either you can say

random vector or n dimensional random variables or random vector with the n random

variables. Such that the expectation of X i square that is a finite for the random variable

1, 2 so on till n as long as the second order once exist.



One can go for, one can go for defining covariance variance matrix. Then the covariance

variance matrix that is denoted by in the big summation notation of the random variable

capital X. That is defined as it is in the big summation notation it is a matrix whose

elements are; the first element is variance of X 1 and the first row second element it is a

covariance of X 1 and X 2 like that so, on the first row the last element that is covariance

of X 1 with X n.

Now, coming to the second row; second row is covariance of X 2 with X 1, second row

second element that is diagonal element that is variance of X 2; like that you can keep

writing. The last element in the in the second row, that is covariance of X 2 with X like

that you can fill up the last row with the first column that is X n with X 1. The last row

second column that is X n with X 2 so on the last row last element that is a diagonal

element that is variance of X n.

So, this matrix is n cross n order; we are creating a covariance variance matrix for n

dimensional random variable. Therefore, this matrix is always n cross n whose diagonal

elements  are  covariance  of  individual  random  variables  and  the  other  elements  are

covariance of X i into Xj for the i th row and j th column.

By using the property of covariance of X comma Y is same as covariance of Y comma

X; you can conclude that this matrix is a symmetric matrix. All the diagonal elements are

the  variance  that  is  nothing,  but  covariance  of  X i’s  with  the  X i’s;  therefore,  it  is

becomes a variance of X i’s.
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So, this matrix has the very important property that is the matrix is positive semi definite;

that means, for an a 1 comma a 2 and so, on a n belonging to R n the vector. Suppose I

denote this as the vector suppose I denote this as the vector a suppose I denote this as a

vector a whose elements are a 1, a 2, a n; belonging to R n, a vector multiplied by the

matrix; then a vector transpose this value is always going to be greater or equal to 0. That

is called the matrix is positive semi definite, the covariance variance matrix of random

vector is always positive semi definite.

We will give a one simple example; how to compute the expected value of a random

vector and covariance variance matrix.
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Example let capital X is the vector whose elements are X 1 comma X 2; be a random

vector with joint probability density function is given by ; that means, both the random

variables X 1 and X 2 are continuous type random variable. Therefore, we are defining

the joint probability density function of x 1 comma x 2; that is 1 divided by x 1; when x

1 takes a value 0 to 1 whereas, x 2 takes the value 0 to x 1; 0 otherwise. So, this is the

joint probability density function of the random vector X 1 comma X 2. You can verify

double integration of a joint probability density function has to be 1.

Let us find expectation of X 1, then we will go for finding expectation of X 2, then we

can go for finding expectation of X 1 square, then you can go for expectation of X 2

square, then we can go for expectation of X 1 X 2, then we can go for expected value of

the vector X. We can find out what is the covariance, variance matrix then we can go for

verifying whether it satisfies a summation; a transpose is greater or equal to 0.

The last one is the, verify a times matrix a transpose is greater or equal to 0. So, all those

things we can do one by one.
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First start with the expectation of X 1; expectation of X 1, you can find the probability

density function of X 1 from the joint probability density function, then you can go for

the expectation or you can use the first definition that is expected value of function of a

random vector. So, we are going to use that that is same as integration from 0 to 1,

integration from x 2 to 1,  x 1; 1 divided by x 1,  dx 1,  dx 2.  You see that the joint

probability density function is 1 divided by x 1 where x 1 is range from 0 to 1 whereas, x

2 range is 0 to x 1.

Therefore expectation of X 1 is double integration 0 to 1 x 2 to 1 x 1 times 1 divided by x

1  divided  by  x  1  is  a  joint  probability  density  function  of  x  1,  x  2.  If  you do the

simplification we will get the answer 1 by 2; similarly you can go for finding expectation

of X 2; that is integration 0 to 1 0, to x 1; x 2 times the joint probability density function,

integration with respect to x 2, integration with respect to x 1.

Again I am using the expected value of function of a random vector; this is same as 1

divided by 4. Similarly we can go for expectation for X 1 square; that is same as same

method what I have done it for expectation of X 1 that is integration 0 to 1 integration x

2 to 1 x 1 square, the joint probability density function is 1 divided by x 1 dx 1, dx 2 or

you can use the change of integration and you can change the order of integration still

you can go for it and you can get the answer that is 1 by 3.



Similarly, you can go for expectation of X 2 square that is again 0 to 1, 0 to x 1 x 2

square 1 divided by x 1 dx 2 dx 1; I am using the same definition again that is same as 1

divided  by  9.  So,  till  now  we  have  got  expectation  of  X  1,  expectation  of  X  2,

expectation of X 1 square, expectation of X 2 square.
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Now, we  will  go  for  finding  expectation  of  X  1,  X  2;  the  same  technique  that  is

expectation of X 1, X 2 that is same as integration 0 to 1, integration 0 to x 1, x 1, x 2

multiplied  by  the  joint  probability  density  function  dx  2,  dx  1.  If  you  do  the

simplification you will get the answer that is 1 by 6. 

So, now we are going for the next result that is expectation of a random vector; that is a

vector whose elements are expectation of X 1 comma expectation of X 2; this vector.

That is same as already we got the result expectation of X 1 is 1 by 2 expectation of X 2

is 1 by 4; therefore, this vector is 1 by 2 comma 1 by 4.

The  next  is  finding  the  covariance  variance  matrix,  since  we  have  only  2  random

variables which is going to be 2 cross 2 whose elements are variance of X 1, covariance

of X 1 with X 2, covariance of X 2 with X 1 or X 1 with X 2 both are one and the same

and variance of X 2. That is same as we got the expectation of X 1 and expectation of X

1 square. So, the variance is expectation of X 1 square minus expectation of X 1 whole

square. So, if you do the simplification we will get the answer 1 by 12.



To find the covariance of X 1, X 2 you need expectation of X 1 X 2 and expectation of X

1 and expectation of X 2; so, all 3 we got it. So, substitute the values, that is 1 by 6 minus

1 by 2 into 1 by 4. So, you simplify you will get the answer that is 1 by 24. Since

covariance of X 1 X 2 is 1 by 24 that is again a covariance of X 2 comma X 1 that is

same as covariance of X 1 comma X 2 that  is  1 divided by 24. Variance of X 2 is

expectation of X 2 square minus expectation of X 2, the whole square. So, you do the

simplification you will get 7 divided by 144. So, this is the covariance variance matrix

for the random vector X 1 X 2.

Now,  we  are  going  to  verify  whether  this  covariance  variance  matrix  satisfies  the

condition a covariance variance matrix a transpose going to be greater than or equal to 0.
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Let us compute; so, here we will go for a, with the 2 elements, a 1 comma a 2 and the

matrix transpose that is a 1, a 2. So, substitute the, that is a 1 comma a 2 and the matrix

value is 1 by 12, 1 by 24, 1 by 24, 7 divided by 144 multiplied by a 1, a 2 transpose

vector.

 Do the simplification, do the simplification first you will get 1 by 12, a 1 square plus a

1, a 2 plus 1 by 4 a 2 square minus 1 by 4, a 2 square plus 7 by 12, a 2 square and this is

same as 1 by 12 a 1 plus a 2 divided by 2 whole square plus 1 by 36, a 2 square which is

greater  than  or  equal  to  0.  Therefore,  we  are  concluding  this  particular  covariance

variance matrix also positive semi definite.


