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I will move into the one more example of a discrete type.
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This is also going to be a very important result that is let x is Poisson distribution with a

parameter lambda and y is again Poisson distribution with a parameter a mu. And I make

the assumption x and y are independent random variables independent random variables.

Suppose I create a random variable Z is x plus y are similar derivation what we have

done it  for the binomial distribution.  The similar derivation you can do and you can

conclude a the probability of Z takes a value z that is going to be e power minus lambda

plus mu lambda plus mu power z divided by z factorial where z can takes a value 0, 1, 2

and so on.

I am not giving the derivation we can do the similar derivation of the previous example

you can get a the probability mass function of z is going to be this form other than a this

z values it is going to be 0. Now we can map this with is there any standard distributions

or common distribution matches we can find out.



So, this is going to be same as the probability mass function of Poisson distribution with

a parameter lambda plus mu. Therefore, one can conclude a Z is also Poisson distribution

with a parameter lambda plus mu. That means, if you have a two independent random

variables both are Poisson distribution with some parameters then the sum is also going

to be a Poisson distribution with a parameter is sum of their parameters.
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The same concept  can be extended for a any n random variables;  that means,  if  a n

random variables are a mutual independent that means there is a one random variable

that is the x 1 that is Poisson distributor with a parameter lambda. There is a another

random variable x 2 that is also Poisson distributed with a parameter a lambda 2. Like

that a I have a n-th random variable that is also Poisson distributed with a parameter

lambda n.

If I make a random variable which is nothing, but sum of a X is; that means, I will land

up only one with the only one random variable by summing all the random variables that

is Z, and this is going to be a Poisson distribution with sum of their parameters.

As long as all the X i’s are mutually independent random variables as long as all the

random variables are mutually independent. Then the summation is going to be again a

Poisson distribution with a parameters this is sum of lambda i’s. From these we are going

to give one important properties that is called Reproductive property.
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 What the reproductive property says that a if you have sequence of random variables

and if you make a sum of those few some of the variables out of it and all are having

some distribution and after making the summation you are getting the same distribution

of same as X i’s,  or the original  sequence of random variable then we conclude this

random variable has a this particular random variables has a reproductive property.

That means for example each X i’s are a binomial distributed and I have a many random

variables. All are mutually independent I make the assumption all the random variables

are mutually independent. Then if I make a random variable as the sum of few random

variables out of this collection if that is also follows a binomial distribution. So, we can

conclude binomial distribution has reproductive property. 

Similarly, one can say the Poisson distribution is also has a reproductive property where

as the Bernoulli distribution does not have a reproductive property. Because if you have a

Bernoulli distributed random variable all are mutually independent, if you make a n such

random variable as a summation then that is going to be a binomial distribution no more

Bernoulli  distribution. Therefore, Bernoulli  distribution does not have a re productive

property.

Similarly, one can go for some common continuous type random variables. If you have a

normal distributions all are mutually independent if you make a summation then that is

also going to satisfies; the reproductive property; that means, summation is also going to



be a normal distribution.  So, like that we can make a list of a standard,  or common

distributions  satisfying  the  reproductive  property  and  not  satisfying  the  reproductive

property.

Now, we  will  move  into  distributions  of  a  functions  of  several  variable  when  each

random variable is of the continuous type. So, for that I am going to give one important

result as a theorem. After I introduce a theorem then I will go for giving some examples

we are not going to prove the theorem. So, I am going to give the important result or the

theorem as a some sort of results, then I am going to give some examples.
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So, let me make it as the theorem we are not going to give the proof of this theorem. Let

me  start  with  this  theorem  for  only  two  dimension  random variable  then  the  same

concept can be extended for n dimensional. So, let me start with the two dimensional that

is let x comma y be a two dimensional continuous type random variables with the joint

probability density function that is small f x comma y with a variables x comma y.

I am going to define new set of random variable that is the first random variables Z is H

1 of x comma y. The another random variable W is H 2 of x comma y. We can assume

that both H 1 and H 2 are a Boral measurable functions, so that Z and W are going to be

a random variables.



I am going to make a few assumptions so that I can able to get the joint probability

density  function  of  Z  and  W directly  with  the  help  of  the  joint  probability  density

function of x comma y. I am going to make a few assumptions if those assumptions are

satisfied,  then that  makes Z is  a  continuous type random variable  as well  as W is a

continuous type random variables not only that I can find the joint probability density

function of Z and W with the help of the joint probability density function of x comma y,

so that is what I am going to give it as theorem.

In the first assumption I can solve z as a function of x comma y and the w as a function

of x comma y. This equation can be solved uniquely for x and y in terms of z and w. I

can solve the same thing I am going to I am replacing capital Z by small z capital X and

Y by  small  x  and  y. Therefore,  whatever  I  made  the  transformation  of  the  random

variable Z is equal to H 1 of x comma y, W is equal to H 2 of x comma y. I am going to

solve those with a smaller letters because I am consistently using the capital letter for the

random variable. So, I am solving this equation uniquely for x and y in terms of Z and W.
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So, whatever I am getting the solution that I am going to write it as say x is going to be

say the answer which I am going to get x in terms of z and w that I am going to write it

as the sum function of z comma w g 1. Similarly I am going to write y as sum function of

a z comma w. So, this is the after solving a those two equations ok.



The second assumption the x in terms of z and w, and y in terms of Z and w I can go for

finding out the partial derivative with respect to z w for x and y. I can find the partial

derivative of x with respect to z and w.

Similarly  the  partial  derivative  of  y  with  respect  to  z  and  w here  I  am making  the

assumptions  partial  derivative  exist  not  only  exist  all  this  partial  derivative  are  a

continuous functions, not only the partial derivative exist it as to be continuous functions

also this is the second assumption.
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With this assumption I am going for concluding joint probability density function of Z

comma W can be written as the probability density function of Z comma w as a function

of a Z and w in terms of the joint probability density function of x comma y by replacing

x by. If you see we made the we got by after solving x in terms of a z and w of g 1 of this

y you are getting g 2. Therefore, in the joint probability density function of x comma y I

am going to replace small x by g 1 of z comma w. 

 Similarly y I am going to replace by g 2 of Z comma w multiplied by the absolute of the

determinant that is called Jacobian as a function of z comma w where I can define the

Jacobian as a function of z comma w that is nothing, but the determinant of the partial

derivative which we have got it partial derivative of x with respect to z, partial derivative

of x with respect to w, partial derivative of y with respect to z, partial derivative of y with

respect to w. 



This determinant is the Jacobian where as in the probability density function of z and w

you substituted the absolute of this Jacobian. This is going to be the joint probability

density function of z comma w; that means, this theorem says whenever you have a

continuous type random variable and you know the joint probability density function of a

the continuous type random variables.

As long as these two assumptions are satisfied the word uniquely is very important if that

is not satisfied then we have a another remark over it. So, here if the assumption 1 as

well as the assumption 2 are satisfied, then we can directly conclude the Z comma W is

going to be a continuous type variables and one can get the joint probability density

function of Z comma W. By substituting an x by g 1 and y by g 2 in the joint probability

density function of a x comma y with the product of a absolute of Jacobian.

The  product  absolute  of  Jacobian  that  is  nothing,  but  the  normalizing  constant;  that

means, the joint probability density function of z comma w over the integration minus

infinity to infinity, the joint probability density function has to be 1. So, this is going to

be 1 whenever you multiply the absolute of Jacobian therefore, the absolute of Jacobian

is nothing, but the normalizing constant.

There is the another remark some books use instead of a product of Jacobian they use

divided by absolute of a Jacobian. In that case they make the Jacobian in the determinant

form not  the  partial  derivative  of  x  with  respect  to  z  and  w they  make  the  partial

derivative of z and w with respect to x and y. Find the determinant of Jacobian of that

inverse then substitute in the formula with the divider in the denominator.

Both the results are one and the same because the result is the Jacobian matrix, Jacobian

this determinant are the inverse 1 if you make a product that is going to be 1. Because

you have a n dimension random variable again you are transforming another n dimension

random variable by satisfying the two conditions that is you are solving a those equation

uniquely and the partial directive exists and continuous that makes whether you use the

Jacobian or the inverse.

Therefore,  the  formula  changes  either  in  the  multiplication  in  the  numerator,  or

multiplication in the denominator form. Because the Jacobian and the inverse Jacobian

that determinant value product is always going to be 1. Now, let us go for a one a easy

example to explain how this theorem works. 
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 Let  x  comma y be a  two dimensional  continuous type  random variables  with joint

probability density function of x comma y that is given as f of x comma y, that takes a

value 1, when x is lies between 0 to 1 and y is lies between 0 to 1, otherwise it is 0. 

So, this is the joint probability density function of x comma y you can verify you can

verify by just you know this is x, this is y this is joint probability density function it takes

a value 1 between the interval 0 to 1, and y is also 0 to 1. So, the in the x y plane the

region is a square with the vertex 0 comma 0, 1 comma 0, 0 comma 1 and 1 comma 1. 

And at the height 1 the surface is at the height 1 over the square in the x y plane. And if

you find the volume below that volume below the surface that plane 1 above the square

shape that is going to be 1, it is a cube volume of the cube; therefore it is easy to verify

this is a joint probability density function of two dimensional continuous type random

variable.  The question  is  we are  going to  create  a  another  two dimensional  random

variable and then we are finding the distribution of a the new set of random variables that

is also two dimensional.

So, I am going to define the new set of random variable you can use the same notation Z

is x plus y that is the function H 1 of x comma y. The second function that is capital H 2

of x comma y that is x minus y ok, both x and y are continuous random variable the way

we have defined Z is x plus y is w is x minus y.



You can immediately say both are going to be again continuous type random variables,

therefore  either  you  can  find  the  cdf  of  z  comma  w.  If  the  question  is  find  the

distribution, if you know that both the random variables are of the continuous type you

can find the joint probability density function. So, here we are going for finding the joint

probability density function of two dimensional continuous type random variables Z and

W.

We can a make sure whether the assumption of the previous theorem satisfied. If it is

satisfied, then you can use the theorem and get the result if it is not satisfied. Then you

cannot find the joint probability density function using that theorem to apply the theorem

you have to make sure that the assumption satisfied. Now, we will go for whether the

first assumption is satisfied or not.
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So, you try to find out that is a said z is equal to x plus y and w that is x minus y. You

solve for this two equations for x and y in terms of z and w; that means, you can get x as

z plus w by 2 correct. If you add this two equations y will be cancelled, so 2 x is equal to

z plus w. Therefore, x is equal to z plus w by 2 y is going to be you subtract, s, x will be

cancelled. So, you will get the 2 y therefore z minus w by 2, that is going to be y. So, you

are able to solve this equation uniquely and you can get the answer x and y in terms of z

and w. So, the first condition is satisfied.



We will go for second condition. Find out the partial derivative whether it exits or not the

partial derivative with respect to z of the function x that is one by two exist which is

continuous constant here that is ok. Similarly you find out the partial derivative with

respect to w partial derivative of y with respect to z partial derivative of y with respect to

w  all  are  exist  and  are  continuous  functions  also  in  particular.  Here  it  is  constant

therefore; the second condition is also satisfied.

Now, we can go for writing the joint probability density function of a Z and w with the

help of joint probability density function of x and y. That is oh before that we will find

out the determinant of a Jacobian that is Jacobian as a function of z comma w that is

determinant of I will substitute all the partial derivatives in the correct order. Whether

you write like this or in the transpose ways it does not matter because at the end you are

finding the determinant. That is minus 1 by 4, minus 1 by 4 therefore, it is minus 1 by 2

this is a Jacobian.
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Now we can go for writing since the two assumptions are satisfied you can give the joint

probability density function of z comma w as first write down the g 1 of a z comma w, g

2 of z comma w multiplied by the absolute of Jacobian. The Jacobian has to be a non

zero, it is also very important condition, because if it is 0, then the probability density

function will  become zero no. So, as long as the Jacobian is going to be a non-zero

quantity we can go for it. 



Now, you substitute in this problem the joint probability density function is function of x

and y is 1 between this intervals, otherwise it is 0. So, you can replace x by z plus w by 2

y by z minus w by 2 within that range of z and w lies between 0 to 1, the value is going

to be 1. So, this is going to be since it is a constant you cannot substitute the x by g 1 and

g 2. Therefore, this is going to be again 1, and the Jacobian quantity is a minus 1 by 2

and we have to substitute which is absolute quantity. Therefore, it is 1 by 2 multiplication

provided this joint probability density function provided x lies between 0 to 1. So, here it

is 0 to z plus w by 2 is less than 1.

Similarly, y is lies between 0 to 1 that is 0 less than z minus w by 2, that is has to be less

than 1. So, as long as z and w satisfies these two conditions in which the joint probability

density function is 1 by 2, otherwise it is 0. So, the joint probability density function is 1

by 2 when z and w satisfies 0 z plus w by 2 is less than 1, 0 less than Z minus w by 2 that

is less than 1. That means, now you can think of a how the joint probability density

function of z and w look like. 
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Before that we can go for what is the region of z and the w in which the joint probability

density function is greater than 0 that is 1 by 2. First we will identify basically what we

want is z w the joint probability density function of z and w. For that first we are making

a what is the region in which the joint probability density function is going to be the



value is 1 by 2. So, the region is if you simplify these two in equalities you can identify

the region of z and w, z and w 0, 1, 2 and 1 minus 1 ok. 
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So, if you simplify those two inequalities; you can identify the region is going to be I am

not drawing the diagram in correct scaling way. Just for the illustration purpose. So, this

is the this shaded region is the region of a z and w; that means, z and w plane this is the

region in which the joint probability density function is 1 by 2, otherwise it is 0.

Now we can verify the joint probability density function integration from minus infinity

to infinity with respect to z and w is going to be 1 because the x y plane is this diagram

above that it is 1 by 2. So, the volume below that surface is 1 by 2 constant over the

region in which this diagram shaded region is there the volume is going to be 1. 

So, this type of graphical representation is possible only for two dimensional variable not

for any n dimensional random variable 3 4 and so on it is very difficult to visualize. So,

this is easy to visualize one more observation in this problem given x and y you can see

it. The joint probability density function is one if you find out the probability density

function of x that is going to be one between the interval 0 to 1 for x.

Similarly, if you find the original distribution of y that is probability density function of y

that  is  also  one  between  the  interval  0  to  1  of  y, otherwise  0.  If  you  multiply  the

probability density function of x and y that is same as joint, so we can conclude x and y



or a independent random variables, where as the joint probability density function of z

and w is 1 by 2 between this interval.
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If you find out the marginal distribution of a Z if you do the simple exercise finding the

probability density function of z by integrating the joint probability density function of a

z and w with respect to w. One can get I am not doing the derivation by substituting the

joint probability density function substitute the correct interval then integrate one can get

the answer that is a z when z is lies between 0 to 1 that is 2 minus z when z is lies

between 1 to 2, otherwise it is 0. So, I can make less than, or equal to here. So, this is

going to be probability density function of z between the interval 0 to 1 that is z, and 1 to

2 it is 2 minus z, otherwise it is 0.
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Similarly,  one  can  compute  the  probability  density  function  of  w  from  the  joint

probability density function of z and w by integrating with respect to z. If you do that

you will get the probability density function of w that is w plus 1, when w in the range

from minus 1 to 0 and it is 1 minus w between 0 to 1 otherwise it is going to be 0. 

The interval of z and w that you can get it you can feel it from the diagram itself, the

range of z is 0 to 2 whereas, the range of w is minus 1 to 1. So, therefore, we are getting

the probability density function like this for Z and probability density function of a w in

this form. The way the probability density function of z and w is like this if you make a

multiplication  you  would  not  get  the  value  1  by  2  that  is  joint  probability  density

function of z and w.

Therefore, you can immediately conclude z and w are not independent random variables

x and y are independent random variable the way we defined z is x plus y w is x minus y

they are not independent random variables. So, with this example we are explaining how

the theorem works.

But sometimes the assumption first assumption that is solve uniquely it may not satisfy;

that means, you may have a more than one set of values instead of z and w in terms of x

and y uniquely in that case for every set of pairs you have to identify what is the density

function with the corresponding Jacobian. And you have to keep adding how many pairs



of solution you are going to get those many summations you have to make it to get the

joint probability density function of z and w.

It  is  similar  to  what  we have  done it  with  the  function  of  a  random variable  for  a

continuous type whenever it is not satisfying whenever the function is a monotonically

increasing, or decreasing or decreasing or increasing form the same technique he has to

be applied for the multidimensional random variable.


