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So,  till  now  we  have  discussed  a  constant  random  variable  and  Bernoulli  random

variable, binomial random variable or binomial distribution.
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Now, we are moving into fourth one, that is geometric distribution. This is also common

discrete type distribution, whenever a random variable which is a discrete type random

variable whose probability mass function is of the form, probability of x takes the value

small x, that is 1 minus p power x minus 1 times p, where x takes the value 1 2 and so on

otherwise, it is 0.

Then we call this random variable x is a geometry distributed random variable here also,

the p lies between 0 to 1. There is the connection between Bernoulli distribution with the

geometric distribution, that connection is a whenever you have a Bernoulli  trials, the

occurrence  of  the  first  trial  in  which  you  get  the  success  that  follows  geometric

distribution.

Suppose you have a random experiment with infinitely many Bernoulli trials in it, and

each  Bernoulli  trial  has  a  random variable,  which  is  a  Bernoulli  distributed  random



variable with the probability of success p. This capital X is nothing but the trial in which

you are getting the first success, that probability is you are not getting the success x

minus 1 times, and the xth trial you are getting the first success therefore, it is 1 minus p

power x minus 1 into p all are consecutive, and all the Bernoulli trials are independent.

So, whenever you have a n independent or sequence of a independent Bernoulli trials,

the  first  success  in  the  nth  trial  that  becomes  the  geometric  distribution.  So,  the

difference between Bernoulli binomial and geometric, the Bernoulli distribution has a

only 2 jumps the CDF has only 2 jumps, and the binomial distribution has a only n plus 1

jumps, the geometric distribution has a countably infinite jumps.

So,  this  is  also  discrete  type  random  variable.  So,  let  us  discuss  the  CDF  and  the

probability mass function of this random variable geometrative distributor.
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So, it has the jump points 1 2 and so on, therefore, at till x is equal to 1, it has the value 0

at x is equal to 1, it has a first jump at x is equal to 2, it has a second jump and so on. At

infinity it touches 1, at infinity it touches a 1.

So that means, of the CDF has a countably infinite jumps with the jump points 1 2 and so

on,  and  jump values  are  1  minus  p  power  x  minus  1  into  p.  And  if  you draw the

probability mass function at x is equal to 1, it has some height, at x is equal to 2, it has



some other height and so on. Then it will be keep decreasing, then it land up at countably

infinite points if you had all the heights that is going to be 1.

So, this is a probability mass function, and this is the CDF of the geometric distribution.

The way I have explained through the data, suppose you have a data with the cumulative

distribution, it is keep increasing at countably infinite number of points, land up to be a

some finite value. Or the probability are the histogram of the data that has a some heights

keep increasing and going down, and it has a countably infinite points in which is it has

this values, then you can conclude the data could follows a geometric distribution.

So, in the statistics,  we get this type of graphs first  from the data,  in the probability

theory course, we started with the probability mass function then the CDF and so on, in a

theoretical  way we study where  as  in  the  statistics  we start  from the  data,  then  we

conclude what could be the distribution of those data.  So,  one can discuss the mean

variance and the MGF for this geometric distribution also.
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So, the mean for geometric distribution is going to be 1 divided by p, and the variance of

a geometric distribution is going to be 1 minus p divided by p square, and one can get

MGF of geometric distribution; that is p times e power t divided by 1 minus 1 minus p

times e power t.



So, in notation we are use x follows geometric with the parameter, when we say x tilde a

the geo within bracket p; that means, this is a geometric distribution with the parameter

p, whose probability mass function is 1 minus p power x minus 1 into p where x takes a

value one and so on. You can always create a another random variable  in which the

probability mass function start from 0 onwards instead of one onwards, then that random

variable  is  call  it  as  a  modified  geometric  distribution.  In  the  real  world  problem

sometimes you come across the possible values are 1 2 and so on, or sometimes at the

values start from 0 1 2 and so on.

So, you can use the correct probability mass function so, that summation is one. I am not

going for the derivation the same derivation what we have done it for the binomial you

can use the same thing.
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Now, we will move into the fifth one, that is negative binomial there is another name for

this distribution, that is called Pascal distribution, a discrete type random variable is said

to be a negative binomial or Pascal distribution. Whenever the probability mass function

is  of  the form probability  of X takes  the value small  x  is  x  minus 1 see r  minus 1

multiplied by p power r and 1 minus p power x minus r; where x takes the value r r plus

1 and so on, otherwise it is 0.

Here r is positive integer, and p lies between 0 to 1; that means, whenever you supply the

value of r and p, you know the distribution of a this random variable. We use a notation



X follows a negative binomial NB, if the parameters r come up p, this is also related to

the Bernoulli distributed random variable in the form of capital X denotes in the x trail,

we are getting first time rth success follows negative binomial, whenever each trails are

Bernoulli and they are independent.

So, whenever you have a independent Bernoulli trials, obtaining first time rth success

that follows a negative binomial distribution with the probability of success is small p,

and the probability of failure is 1 minus p.
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When r is equal to 1 the same random variable x follows a geometric distribution with a

parameter p. When the rth success that is when it is a first success in the xth trail, then

that follows a geometric distribution. Therefore, geometric distribution is a special case

of negative binomial or Pascal distribution with the parameter r is equal to 1. 

The probability mass function can be visualized once you are getting r minus 1 success

out of x minus 1 bernoulli trials, that follows a binomial distribution followed by the rth

success; that means, x minus 1 see r minus 1 p power r minus 1, 1 minus p power x

minus 1 minus r plus 1 that can be treated as r minus success getting out of x minus 1

trials, which follows a binomial distribution multiplied by the rth success getting in the

xth trail. Therefore, x can be r that means, you may get the rth success in the x trail itself,

or you may get rth success in r plus 1th trail and so on.



So, that is a interpretation of a the probability mass function p of x equal to small x

where x takes  the  value r  r  plus  1 and so on.  So,  this  is  also  discrete  type random

variable, and CDF has a countably infinite jumps. So, I am not going to draw the CDF of

a negative binomial, but one can visualize the CDF has a countably infinite jumps of this

discrete type random variable.

For this random variable also, one can find the mean variance and so on, the mean of this

random variable is nothing but r divided by p, and variance of this negative binomial that

is r times 1 minus p divided by p square. You can verify when you put r is equal to 1 it

has to be a same as half geometric distribution. And the MGF of negative binomial or

Pascal distribution (Refer Time: 12:40) p times e power t divided by 1 minus 1 minus p

times e power t whole power r, when r is equal to 1 that is same as the MGF of geometric

distribution, I am not going for the derivation, but one can drive and you can get the

same as 0.
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So, the next distribution is Poisson distribution is a very important distribution, because

this connects a probability with a stochastic process in the different level. A discrete type

random variable is said to be a Poisson distributed random variable, if the probability

mass function of this random variable is going to be of the form e power minus lambda

lambda power x divided by x factorial where x takes value 0 1 2 and so on, otherwise 0.

Here the lambda has to be strictly greater than 0 it is a constant.



So, whenever any discrete type random variable whose probability mass function of this

form, e power minus lambda lambda power x by x factorial; where x takes a value 0 1 2

and so on otherwise the probability mass function is must be 0, then that random variable

is call it as a Poisson distributed random variable. 

You can verify in this probability mass function, this is always greater or equal to 0, and

if you make a summation over x starting from 0 to infinity, e power minus lambda is out

and e power minus lambda is outside then the summation, and that summation quantity

becomes e power lambda. And since the lambda is satirically greater than 0; Therefore,

this quantity is going to be 1 therefore, this is a probability mass function.
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One can draw the CDF for this Poisson distributed, x takes value 0 it as a jump at x equal

to 1, it has a another jump x equal 2, it has a another jump and so on countably infinity

jumps. It touches one at infinity, similarly, if you draw the probability mass function of

Poisson distribution 0, it has some height, and one it has another height, 2 it may have

another height and so on, and it will be keep decreasing at countably infinite number of

points.

So, this is a one diagram in which the lambda value is; so, that it  is keep increasing

decreasing, or there is a possibility it may have a at x is equal to 0, it to have a tallest

then it may keep going down. And model possibility the summation of probability mass

at the countably infinite number of points it is going to be 1. So, the same conclusion, if



the data has cumulative distribution graph, or the histogram look like this CDF form or

probability  mass  function  form,  then  one  can  concluded  that  data  for  his  Poisson

distribution.

And there is another relation with Poisson distribution with binomial and Bernoulli, if

you  have  a  n  independent  Bernoulli  distributed  random  variable,  that  summation

becomes a binomial, when the n becomes very large, and the p probability of success is

very small one can prove the limiting case of a n tends to infinity, and p is very small,

then  the  binomial  distribution  will  tends  to  Poisson  distribution.  For  binomial

distribution the n is always finite quantity, and the p is probability of success in any one

Bernoulli trial, and all such n Bernoulli trails are with the probability of success p same,

as and all are independent therefore, you are getting the binomial distribution.

But  for  larger  n  also  when  p  is  very  small,  then  the  limiting  case  of  the  binomial

distribution goes to Poisson distribution, therefore, you have a countably infinite jumps

in the CDF, one can visualize the limiting case of a binomial  distribution is  Poisson

distribution.  So,  that  is  the  connection  between  Bernoulli  distribution,  binomial

distribution and Poisson distribution.
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One can get the mean for Poisson distribution, that is nothing but a summation, x times

probability of X is equal to x, where x takes a value 0 to infinity. This is nothing but x

times probability of X is equal to x is e power minus lambda lambda power x by x



factorial when x take a value 0 to infinity. X factorial and x cancel so, you will get x

minus 1 factorial, you can take one lambda outside, the remaining quantity becomes one.

Therefore the mean is going to be lambda, similarly one can find E of X square E of X

square that is nothing but summation x square times probability of x equal to x, where x

takes a value 0 to infinity, the similar way one can compute. So, you can get the answer

that is a lambda square plus lambda. If you do the little simplification by substituting

probability of x equal to x that is e power minus lambda lambda power x by x factorial to

the simplification, you will get lambda square plus lambda.
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Therefore you can get the variance of X; that is E of x square minus E of X the whole

square.  And expectation of X square is  a  lambda square plus lambda and E of X is

lambda therefore, that is lambda square so, simplify you will get lambda. So, these are

very important result the mean and variance of the random variable is same which is

lambda. So, here lambda is a parameter, because once you know the value of lambda you

are known with the distribution; therefore, we use a notation x follows the capital P with

the parameter lambda; that means, this is a Poisson distributed random variable with a

parameter lambda.

So, once you specify the value of lambda, you are known with the distribution of this

random variable. So, in Poisson distribution the important result is a mean and variance

are  same  which  is  same  as  the  parameter.  Similarly,  one  can  compute  the  moment



generating function, because through this you can get all the moments of  (Refer Time:

20:20). So, if you do the MGF calculation, it is a expectation of e power X times t then

that is same as a summation e power small x t, and the probability of X takes value small

x, that is e power minus lambda lambda power x by x factorial, where x takes a value

from 0 to infinity. You can keep lambda and e power, sorry, you can keep a lambda

power x and e power x t together. So, therefore, this is nothing but summation x is equal

to 0 to infinity, e power minus lambda lambda times e power t power x i x factorial 

So, if you do the little simplification, you can get the answer that is same as e power

lambda times e t minus lambda so, that I can write it as minus 1. So, it is basically e

power minus lambda is outside. So, this summation is nothing but e power lambda time’s

e power t. Therefore, it is a exponential of a lambda time’s e power t minus 1 that is a

MGF.  So,  from  the  MGF  you  can  always  get  the  by  derivative  you  can  get  the

expectation of x expectation of x square, then through that you can get the variance also.

So, since it is a discrete type random variable,  you can go for probability generating

function; so, even though I have not explained how to find out the probability generating

function  for  all  the  distribution.  So,  you  can  starting  from  the  Bernoulli  binomial

geometric Poisson and negative binomial, all this distribution because it is a discrete type

and it takes a positive integer values. Therefore, one can go for finding the probability

generating function of this stand common standard discrete type distributions.
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The next one that is number 7, that is a discrete uniform distribution, a discrete type

random variable is said to be a discrete uniform distribution, whenever the probability

mass function is of the form probability of X takes a value small x, that takes a value one

divided by n, when x takes a value x 1 x 2 and so on x n, otherwise 0. Here the x is or the

real numbers.

So, it can be any n points, the probability mass function are those n points is same, which

is same as one divided by n, and all other points the probability mass function is 0 such a

discrete type random variable is called a discrete uniform distribution,  why the word

uniform because the probability mass function is same for all such n points.

So, all such n point has to be district all should be different distinct n real values in which

the probability mass function is a same. And since it is a probability mass function the

summation has to be 1. Therefore, the for a uniform distribution the probability mass

function is 1 divided by n, then only the summation is going to be one and all are going

to greater than equal to 0 1, we at those n points.

So, such as discrete type random variable is called a discrete uniform distribution.
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Let  me draw the sample  CDF, suppose x 1 is  here,  x 2 is  here,  x  3 is  here,  x n is

somewhere here. It need not be equi-distance, it can be any n district n points. And the



CDF I have just list out x 1 is the first value, and x 2 is greater than value x 3 is a greater

than x 2 and so on. So, the CDF is 0 till x 1, at x 1 it has a jump and jump values 1 by n.

So, this height is 1 by n till x to the value is 1 by n at x 2 it as a next jump. Till x 3 it is

going to be the same value and this jump is 1 by n. And x 3 it has the next jump and this

jump is 1 by n. All the jump heights are same, at the point x n it has a last jump, and it

becomes one.

If you see the CDF for any discrete type random variable, which has a only n jumps, and

all the jump values are same, then that random variable is a discrete uniform distributed

random variable. You can relate this CDF with the earlier random variable CDF. It may

have a one jump or n plus 1 jumps or countably infinite jumps, but the jump values are

different at different point. Whereas, here it is fixed always n jump points and always the

n jump values are same which value is one divided by n that value is on by n, then that

CDF is corresponding to the CDF of a discrete uniform distribution.

So, if you draw the probability mass function at those n points, the heights are going to

be  1  by  n  same  heights;  that  means,  if  you  have  a  data  in  which  if  you  draw the

histogram. And all the histogram heights are same, with the n number of points or with

the way you made a groups and so on,  you can think of that could comes from the

discrete uniform distribution. Or the data if you draw the CDF cumulative distribution

and it has a same jump heights, and only finite number of jumps then it is a discrete

uniform distribution.
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That means, you can interpret in other way also, you have omega, omega consist of finite

or countably infinite, or uncountably many samples in it the way the mapping goes maps

into x 1 x 2 x n, such a way partitioning omega into n pieces, and each one has a mass 1

by n. Each one is attached with one point whose probability mass function is 1 by n.

So, you partition is the first partition second partition so on. This is a nth partition whose

mass is 1 by n; that means, that random variable is discrete uniform distribution.
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Since  it  is  a  discrete  uniform  distribution,  you  can  find  the  mean  is  nothing  but

summation x times probability of X takes a value small x, where x takes value from x is

equal to x 1 to x n. And the probability of x equal to x is 1 by n therefore, the 1 by 1 can

be taken out side, and you add all the values I is equal to 1 to n.

So,  the mean is  nothing but  me or  expectation  is  nothing but  some of  those  values

multiplied by 1 by n. That is nothing but it is average. So, whenever the random variable

is of the discrete uniform, the mean or expectation which is same as the average, we can

go for finding the variance of x that is a expectation of x square minus expectation of x

the whole square. So, first you compute the expectation of x square, then you substitute

in this formula then you can get the variance.

So, since the probability mass function at those points is 1 by n, therefore, this is going to

be one divided by n summation i is equal to 1 to n x i square minus. This is a 1 by n

summation  of  x  i,  i  is  running  from  1  to  n  the  whole  square  so,  if  you  do  the

simplification you can get it.
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And the similar way you can get the MGF also, the MGF is going to be MGF of x, that is

same as 1 by n summation e power t times x i, where i is running from 1 to n, because of

the probability of mass function it x equal to x is 1 by n that can be taken out.



So, the summation e power t times x i i is equal to 1 to n with the multiplication 1 by n

may give the moment generating function for the discrete uniform distributed random

variable.  With this we are completing a some common discrete distributions,  starting

from a constant Bernoulli  binomial geometric negative binomial Poisson and discrete

uniform distributions. 

So, there are 7 distributions we have discussed they are all called common discrete type

random variable; whose probability mass function and CDF mean variance MGFs are

discussed.


