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Scrambled Sets

Today we will be looking into this topic of scramble sets which happens to be the first

mathematical definition of chaos. We all know that chaos is something which deals with

some kind of unpredictability, some kind of unstability. And we all also know that it was

basically  in  late  18th century that  Poincare  observed that  the planetary  motion  is  an

unstable system. So, within this observation there has been lot of unpredictability and lot

of unstability observed in many natural  systems, but there was no regress systematic

mathematical definition on or any study of chaos. So, nobody looked into like putting it

into an a geomantic form and studying it up.

We also know that many natural systems it was also observed that many natural systems

they have some kind of a very random behavior, and with this random behavior there is

also some kind of a pattern involved in it.  So, this kind of pattern seen in a random

behavior was something which many philosophers had termed as does god play dice.

(Refer Slide Time: 01:37)

So, many of the natural systems that you see, you will find that there is a total random

behavior, and with this random behavior you find that even though there is some kind of



pattern involved in it. And today we shall be starting we which we want to look into we

want to study these kinds of patterns, where you find regularity, you find some kind of

predictability, you kind of sort of chaos.

So, we shall look into this aspect. Now it was for the very first time than 1975 that Li and

Yonke gave this first mathematical definition of chaos in their epic paper. So, their epic

paper is period 3 implies chaos. Now if we look into this definition, though when they

define  they  have  given  this  definition,  this  definition  has  given  rise  to  many  other

definitions also, but as we know today this is a very weak. In fact, one of the weakest

forms of definition of chaos.

So,  there  are  other  definitions  of  chaos  also,  which  clearly  imply  this  particular

definition. So, first of all let us look into what this definition is. 
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So, we all know for us we start with xd to be a metric space. And our system so, we start

with this definition of a scramble set. So, for the system so, we have a dynamical system

is x f, for the system x f, right, let S be a subset of x with the following properties, such

that so, what we want is that for every p and q in S with p not equal, distinct p and q.

So, we have this first property that if I take the lim sup of the distance between this orbit

of p and q, then this is always positive. And if I look into the lim imp, that is the infimum

of this distance. So, we find that this orbit is sort of the points in all the set S is such that



you take any 2 points over there, the orbits arbitrarily for infinitely often they will come

arbitrarily close to each other, but then they will also diverge; that means, infinitely many

times they will be very, very far away from each other.

So, if you want to look that maybe we can think of looking into this orbits. So, supposing

this is my orbit of x. So, this is basically my orbit of x, I start with this point x. And my

orbit of x goes y is another point here. So, in S then my orbit of y will be something like

this. So, infinitely often it comes close to the orbit of x and infinitely often it is very, very

far from the orbit of x. So, typically we are looking for a set S with these properties, then

we say that if S has this property, we say that S is a scramble set. So, S is was scramble

set.

So, we have this definition of scramble set here. We looking out basically for a scramble

set. Now you can imagine that the unpredictability seen in this kind of system supposing

there is a scramble set the unpredictability seen is too large. Because if you have these 2

if we come across these 2 orbits, right, you never know what is going to happen, because

this will be basically away from each other, basically very close to each other. And we

find that the definition of chaos basically is looking into this kind of unpredictability. So,

of course, this is Li Yorke definition.

(Refer Slide Time: 07:12)

So, we come up with what is the definition. So, the system xf is called Li Yorke chaotic.

If x admits an uncountable scramble set. So, that means, that now when I am looking out



for my scrambled set, right. My system is said to be an chaotic if we have an uncountable

set of points for which the orbits come arbitrarily close to each other, and also, they

move apart right with some distance.

So,  this  is;  what  is  basically  the  definition  of  chaos.  The  first  definition  of  chaos

proposed by li yorke. Now if you look into this definition of chaos, this definition of

chaos as I said earlier happens to be very, very weak definition of chaos. This implies lot

of other definitions. So, we first look into something more simpler here. Now we have

something call and of course, we have the system call li yorke chaotic, but then now I am

looking into a pair right. So, if I look into this pair. So, I take this pair x y, this is called a

li yorke pair. If I take this 2 points at x and y this is a scrambled set. 

Then there was a variation in this definition. And the variation in this definition came up

that if for my scramble set instead of taking my lim sup to be or instead of taking my

infimum sorry supremum to be greater than 0. If I have this condition, then S is called a

delta scramble set. We have something call a li yorke pair, and it is very important many

times to observe that the system has a li yorke pair; that means, at least we have 2 points,

which are which constitute a scramble set.

So, based on this definition, the definition li yorke chaos goes up saying that there is li

yorke chaos if it has an unaccountable scramble set. So, based on that there were other

definitions of chaos proposed and these definitions are something called dense chaos. 
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Dense chaos is simply saying that you have a dense set of scramble set. And there is

another definition which is again used a lot  quite a lot depends on the scramble set,

which is  called distributional  chaos.  I  am not going into the details  of distributional

chaos, but again this is also something which is studied a lot and it is related.

Now, what li yorke proposed was that;  if you have a periodic orbit of period 3, then

basically that implies that there exists an uncountable scramble set. What happened was

for the kutcha and smital sometimes in 2002, right, they proposed that for the system I

have an interval I. And I have f where be my I S basically an interval in R, this 2 points

scramble set implies an uncountable scramble set. So, for intervals it is enough to see

whether we have a scramble set. We have at least, we have li yorke pair right 2 points

scramble set means just a li yorke pair. So, for an interval it is enough to see that there is

a le yorke pair. If there exist  a li  yorke pair then it  means that it  is li  yorke chaotic

because that would give us an uncountable scramble set.

Now, we go back to today we will be only discussing li and yorkes theorem of period 3

implying chaos. So, we look into this theorem. So, this is li yorke theorem. 

(Refer Slide Time: 13:04)

Now, again  li  yorke  theorem is  based  on the  interval  because  we were  working  on

intervals. Last time in the last in the previous class we had seen that if we have a periodic

point of period 3, right. That that implies that there exists periodic points of all periods.

And if you try to recall the proof of that we had used this idea of looking into where does



consecutive intervals map. So, we are again going to recall that that property right and

we are going to look into this proof. So, what does li yorke theorem says that. It says that

if f is a system from I to I right, some interval to interval is continuous; so, that means, I

am I am working in the dynamical system x I f. And f admits a periodic orbit of period 3,

then this system I f is li yorke chaotic.

So, li yorke theorem is very simple, you have a system on an interval, and on an interval

if you if the system has periodic orbit of period 3, that implies that there is it is li yorke

chaotic; that means, we are saying that there exists an uncountable scramble set.

Now, we will be looking only into the outline of this proof because a rigorous proof is

very, very difficult to give at this particular stage. And of course, it would require lot of

time.  So,  we will  try  to  look into  the outline  which  we can finish in  this  particular

lecture. So now, what we want to do is; we want to look into this system again, and to

look into the system again, what we need is we need a periodic orbit of period 3. So, that

is what first of all I am trying to draw trying to draw the graph of the system, which has a

periodic orbit of period 3. Now for this particular system, if I want a periodic orbit of

period 3, then I know I should have something like this, I have an a here right. And I

know that the value of a has to be b, right. And then I know that the value of b has to be

say some c, and then I know very well that the value of c has to be equal to e.

So, I need to have a periodic point. So, basically this point has to be attained at a the

value has to be equal to b, at b the value has to be equal to c, and at c the value has to be

equal to a. So, I need a system right which has this periodic orbit of period 3. And we can

simply draw the system not very difficult to draw the system. So, I think of the system

maybe looking into the system right. So, it will basically it will be a curve which passes

through these 3 points.  We are very well  aware that  any kind of system it  could be

anything over here, lot of this depends because you have this orbit of period 3, lot of it

depends on what is now you know that this has to be this graph at this particular point

has to take up this kind of form right.

So, a lot of what we are going to discuss in this proof depends on, what will be basically

the derivatives? Or basically what will be the slope what kind of curve we will have over

here? So, what kind of curve can we trace which has this kind of property, and we find

that there are most of the curves that we can trace with this particular property, will be



basically of this kind. And then has it what our proof will basically depend on what kind

of differentiable  properties to this curve have right.  So, what kind of slopes can you

(Refer Time: 17:45) or what will be the kind of tangent plane that you can observe for

this particular curve.

So, our proof depends basically on that aspect. And that is what we shall be discussing.

Now we again recall  something which we had already seen in case of our proof for

circuses, case for basically the coronary of circuses case theorem. So, what as we going

to look into we are going to look into this part. So, this is my a right. This is basically my

b. And this is my c. And we observe that f of a is b, right. F of b is c. And f of c is a.

Also, we recall what we had given as some kind of nomenclature that this interval a b,

right I am writing it as I naught. And this interval bc is being written as I 1. 

We also  that  what  happens  in  this  case  is  that  if  I  take  f  of  I  naught,  right.  That

particularly contains I 1 could be more we do not know, right. And if we take f of I 1 it

contains the union of both I naught and I 1. So, this is something which we had already

observed last time. There is something more which we had observed last time, and we

can come back to that.

(Refer Slide Time: 19:39)

So, what we had observed last time was, that if I start with a small interval I know that f

of I 1 contains I 1 right. So, we can start we have a small interval J 1 contain in I 1 right.

So, there exist J 1 containing contained in I 1, such that f of J 1 right is equal to I 1, right.



And you can proceed in this manner I also know that f of I 1 contains I naught right. So,

there can exist an interval K 1 contained in I 1 such that f of K 1 equal to I naught this is

also something possible. And we had also observed that f of I naught contains I 1.

So, we can have another intervals L 1, right. Subset of I naught such that f of L 1 is equal

to I 1 right. So, we have this observations with us, now with the help of this observation

what we can do is we can simply start with some kind of intervals. So, let me start with

an interval say J 1, I start with some interval J 1, now my J 1 is either a subset of I 1 or a

subset of I naught I just start with J 1, right. And then I am looking into the fact that I

have another interval J 2. And my J 2 is such that f of J 1 contains J 2. 

Then given a J 2 so, once a J 2 is given, I can have taken interval J 3 such that f of J 2

contains J 3, right. Then again, I can keep on going in this manner. So, I can always have

for an interval J n, right, I can always have another sub interval J n minus 1. Now these

intervals will always be subset. So, I will have this J 1 J 2 J n, right. This will all be

subsets of the interval a c, right. And whether they are a part of I naught or a part of I 1,

right, will try to push some conditions into that, but we can always find such kind of

intervals.

Now, what we try to do is for this particular kind of intervals, right we try to define a set

of sequences. So now, I am interested in looking into a set of sequences. So, what do we

start here? So, I take f to be so, I am taking this set of sequences. 
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So,  let  J  be the set  of sequences  J  n right.  So,  these are  basically  sequences  of sub

intervals in a c, such that the first condition I want is that my J n is either I naught, right.

Or J n is a subset of I 1, such that with my f of J n right containing J n plus 1. So, this is

my very first condition, and the second condition that I put in this sequence of intervals

is that. So, the second condition is that if my J n is I naught right. 

So, at least I want that J n should be equal to I naught at some particular stage. Because I

do not want to always I can always remain in J 1, but I do not want to do that. So, if J n is

equal to I naught, right. Then n should be equal to k square for some k in n. So, it is

when n equal to so, it  can be I naught at many other places, but at least  I want that

whenever your n is equal to k square whenever n is a perfect square, right. Then for this

perfect square my gn should be equal to I naught.

So, J n equal to I naught for n equal to k square. And then my J n plus 1 at least for 2

next to iterates J n plus 1 J n plus 2, they should always be a subset of I 1. So, I do not

want to remain in I naught all the time. But at least 2 times I want to move out. And this

is always going to be possible, because I cannot have 2 immediate perfect squares right

with the difference of 2 that is always going to be possible. So, what we do is we take up

a sequence of intervals, right with these property. Now one can say that I can have many

such sequences of course, it is always possible. We start with whatever you start with

your J 1, right you can start with J 1 to be anything, right. You can have many such

possibilities. And for all these possibilities what we have is a collection.

So, let f be this collection. So, this is my collection of all J n with the above properties.

So, I have this collection of all such sequence of intervals. Now, when I look into this

sequence of intervals, right. I want to now associate a number with it. So, for each say I

am calling it J star, right belonging to f. I want to now look into some kind of a density

here right. So, such that I am looking into all those J star, such that I have some kind of

density of numbers here. So, I take this limit as n tends to infinity. I am looking into a

some number which I call as J star and n square divided by n. And I want to call it n star.

Where what is first of all I need to define this quantity. So, what is my J star of n square?

So, this is basically this denotes the number. So, I am looking into the set 1 2 up to n. I

am looking into the set, right sorry, n square I am looking into the set, right. 1 2 up to n

square, right. All the number of I for which Ji start; that means, now I am looking into



this J star right to be equal to basically the sequence of Ji star. So, my Ji star should be

equal to I naught. I am looking into this number. So, I am looking into those number for

which this is equal to I naught. And now I am looking into for those J star in f, right.

Such that if I look into this particular density of n here what we find is that this average

density of I for which this is equal to the number of I is equal to I naught. So, the average

density of I naught in this particular sequence happens to be n star.

. So, we are trying to look into those we are collecting those kind of those J star in f. This

is equal to n star. And so, this is one condition. So, what is this n star? So, I want this n

star such that this n star I of course, I want it to be n star it would be n star for any n for

whatever be the n star. But I want my n star with certain properties and I want this n star

to belong to some for all this n star to belong to M 1, right. Such that belongs to M 1 for

M is some integer which is very much larger than m, but it is less than 1. Now what is

this M? This M basically depends on the derivative of f right in this particular interval ac.

So, in the interval ac I am looking into the derivative of f as all the points and it depends

basically this number I can pick up this number based on that particular derivative.

So, we look on to we look into the collection of all this J star for which this limit is n star.

So, this J star is characterized by n star. And I am looking into all such J star for which

my n star belongs to this uncountable set M 1. Where M is a number which is very, very

close to one, but basically M is a number between 0 and 1, but it is very, very close to

one compare to 0. So, it is very, very far away from 0, but it is very, very close to 1. So, I

am looking into that particular problem. Now what more can we say about for this J star.

Now once I had this J star right all we know is that for this particular J star. So, when I

when I pick up this J star, right this J star is characterized by this particular n star.

So,  if  I  change  if  I  take  another  sequence  here.  So,  for  example,  if  I  take  another

sequence may be J hash. So, if I take this another sequence J hash, it is going to give me

another number n hash, right. Where what is this number? So, this number is basically

limit as n tends to infinity, right. J hash n square right upon n. So, this number will be n

hash.  And we find that  whenever  n star  is  not  equal  to  n hash,  right.  Then these 2

sequences will be distinct right. So, J star and J hash are distinct, whenever n star and n

hash are distinct. And that is; what is our next observation that we take this collection.
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So, I am not taking this collection f star collection of this sequence is J star, such that n

star belongs to M 1, right. I am looking into discussed sub collection. So, this is basically

a sub collection of my f right.

So, we have this sub collection. Now one thing we can observe is that if or basically if

my n star is not equal to n hash, right. Then my J star is not equal to J hash, right. We

know that theyll will have different sequences here. And we are taking this collection for

all n star belonging to M 1 right. So, basically, we are looking into all possible densities

we are allowing all possible densities of the interval I naught coming into the sequence J

right.  So,  since  we  are  looking  into  that  aspect.  We can  say  that  this  f  star  is  an

uncountable  set.  So,  this  f  star  happens to  be an uncountable  set.  The reason is  for

distinct we have distinct right. If n star is not equal to n hash, then we find that these 2

things are distinct. And since we are taking an uncountable stuff, we know that this f star

is an uncountable set.

Now, for each f star, now for each J star we also observe that. Now where does x star

belong to? So, x star can either belong to I 0 or I 1 depending on where we started our J 1

right. So, I can get an x star right belonging to this interval ac, right. Such that f n of x

star belongs to J n right for every n. So, for every n we have f n of we have an x star such

that fn of x star belongs to J n sorry, belongs to J n star right. So, we have this particular

sequence  in  mind.  So,  this  belongs  to  J  n  star  for  every  n.  And  I  take  my S  now



specifically my S here is basically the collection of all x star such that of course, for

every J star I have an x star and each J star is characterized by my n star right.

So, and I am looking into all those n star for which we can clearly observe, right? That S

is an uncountable set. So, S happens to be an uncountable set. And what more can we

observe about this S. So, so let me take p q in S.
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Now, I can find infinitely many n. So, there exist, because if I take pq in S, right each p

and q will correspond to distinct sequences, right in my f stars. So, pq r in S and they

correspond to distinct sequences in f star. And so, what we find out is that there exist

infinitely many n for which if I look into fnp it will belong to I naught and if I look into

fnq it will belong to I 1 right.

So, infinitely many of times we will find that fnp is in I naught and f n q is in I 1. And

there will be infinitely many such n. So, what can we say about this particular scenario?

Then we can say that the supremum here is positive always positive. Now what happens

here when I am looking into p q and S and n being equal to n square or n plus 1 square?

So, what happens? Because we had put some condition on the squares. So, what happens

for the square right?

So, what happens here is; I am not getting into the details of the proof here, but we can

always find I am calling it b star right belonging to this interval ac, right. Such that if I



look into my f n square of p f n square of q right, f n plus 1 square of p f n plus 1 square

of q right so on. So, if I find this thing, these will be all these are arbitrarily closed to b

star. So, they will all come up very, very arbitrarily close to this point b star. And with

this observation, all we can say is these are coming very close to one single point right.

So, what can we say about the infimum of the distances between them right. So, the

infimum of the distances between them will be going to 0 right.

So, if I look into the infimum here. So, that proves that you have period 3 on an interval.

This period 3 gives you an uncountable scramble set. Although actually in practice it is

very, very difficult to find out an uncountable scramble set. It is very, very difficult to say

that fine this this is our scramble set and this is uncountable. Because again we cannot

compute  that  computed  always has  some kind of  precision,  and it  always  calculates

along with that precision. We end up here will see some more properties later.


