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Lecture – 04
More on Orbits

Welcome to students. So, today we will be looking more on Orbits. And since we are

looking on orbits we will look into the general setting of metric spaces.
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So, for us here x is a metric space, we do not always need it to be compact, but whenever

we need it to be compact we will specify that part. And f happens to be a continuous map

from x to x. For us, as you all know xf is a dynamical system. And I just want to recall

that we have talked about orbit of x, which is basically the set x fx, right f square x and

so on.

Now, what happens if my p is a periodic point? So, what happens in case p is a periodic

point of period say n. In that case we find that the orbit of p is just p fp f square p fn

minus 1 p. And then fnp is equal to p itself. So, we find that the orbit of a periodic point

happens to be finite. Now what happens if my q is an eventually periodic point? Then if I

look into my orbit of q, my orbit of q will be q f of q say and that goes up to some fkq,

and then fkq is a periodic point. So, this goes up to some factor, and then we get k plus n

minus 1 q maybe fkq is a periodic point of period n.



So, we get orbit of q to be equal to qfq fkq up to fk plus n minus 1 q. Now if you look

into this orbit also, for an eventually periodic point also, the orbit happens to be finite.

We can treat our periodic points also as eventually periodic.  So, in that case we can

simply say that we can classify periodic points or we can define eventually  periodic

points by those points whose orbit happen to be finite. So, these are having finite orbits.

Now we want to look into what happens to this orbit closure.

(Refer Slide Time: 03:52)

So, we are now looking into another aspect of the orbit. So, what do we mean by an orbit

closure. So, if we talk of orbit closure. This is basically the topological closure of the

orbit. So, I am talking of the topological closure of the orbit. So, I am looking into the

closure of the orbit x. We know that if my x is a periodic point, then in that case since for

a periodic point or for an eventually periodic point, the orbit is finite it will be it is own

closure because we are now in the setting of metric spaces. So, we find that orbit of orbit

closure of x is same as orbit x, in case x is an eventually periodic point.

We are now interested in looking into, what can what more can we say about this orbits.

So, what we find here is; I am writing down a simple proposition here. So, let me take

any integer any natural number n. So, n is N, then the set of all points for which fnx is

same as x. So, the set of all points x for which fnx is same as x right is A close set close

set in x. The proof of this is very simple. So, we want to look into the proof of this part.



What are all these points? I am looking into the set of all x in x. So, I am calling my a to

be the set of all x in x such that fnx is equal to x.

So, what is my A? If I look into that part A is simply this A is a subset of x right. So, A is

the set where the continuous functions, I have one continuous function which is fn that is

composite of fn times and identity. So, this is my identity function. So, we are looking

what is our a our A is the set where all continuous where the continuous functions fnn

identity, right they coincide. When these sets coincide wherever 2 continuous functions

coincide, we are now in the setting of metric spaces. So, we know that such a set will

always be closed right.

So, A is closed. Now if I look into this aspect, right I can simply say that as a corollary

that if I look into any set, right. The set of all fixed points is closed. So, the set of all

fixed points of f is also closed, because it is just corollary to this aspect. We again look

into this proposition once again. Our claim is we are looking into whole points where fnx

is equal to x. What are all the points where fnx is equal to x; of course, periodic points of

period n.
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But also, we are looking into periodic points, whose period is divisible or whose period

basically divides in right.

So, we are basically not looking we are looking into a collage of periodic points, right.

Not exactly periodic points of period n, we are looking into a collage of periodic points.

All periodic points who is basically whose period divides n including n itself. So, what

happens?  If  we  are  now exactly  looking  into  periodic  points  of  period  n,  will  this

proposition always hold? Do you think that this proposition will always hold? So, we

look into a very simple example here.
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This proposition does not hold for all periodic points of period n. Simple example here I

can take up my fx to be equal to minus x. Where I am working on the real line, right we

have already seen this example earlier.

What happens here is that all points, right all points except 0 are periodic points of period

2. We have seen that earlier also. So, all points except 0 are periodic points of period 2,

but what are all these points? So, these points are basically minus infinity to 0 union 0 to

infinity all these points are periodic points of period 2, but we very well know that this is

not A closed set right. So, this is not A closed set. I can also look into one more corollary

here, supposing I again take up my n belonging to n.

The set of all x, for which fkx is same as x, for every k less than or equal to n, right this

is also A closed set.  So, basically, I am looking into again,  we have this  proposition

saying that if fnx is equal to x for a particular n, right. The set of all such x satisfying that

is A closed set. So, what we are trying to look into? We are just looking into finite union

of closed sets. And so, the set will always be closed. But what happens now so, this was

like finite union of closed set. What happens in the case of say union of all such points?

So, what can we say such that fkx equal to x, right for all k in the set of natural numbers.

What  can  we  say  about  this  factor?  Essentially,  I  am looking  into  the  union  of  all

periodic points. Because every point right which satisfies fkx equal to x is definitely a

periodic point of some period. So, I am basically looking into all periodic points. So,



what happens in case of all  periodic  points? I  am looking into union of all  periodic

points. Does it form A closed set? So, let us try to look into some example here.
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Now, I am again going back to my circle example. And I am looking into this function,

we have already discussed it earlier f of theta is 2 theta we go back to this example once

again. Now what is a fix point here? See if I want to look into what is a fixed point

because this is like 2 theta mod 2 pi I am looking into a mod 2 pi functions right. So, this

is 2 theta mod 2 pi, right I am saying that fixed point will be only those points for which

2 theta is equal to theta mod 2 pi. And the only point which satisfies this would be my

theta equal to 0.

So, this is the only fixed point here, but does it have periodic points. So, if we want to

look into periodic points say of period k, I am interested in looking into all points such

that fk theta happens to be equal to twice theta. Of course, mod 2 pi sorry fk theta equal

to theta mod 2 pi. These are all my periodic points of period k. Now when I am looking

into fk theta equal to theta, basically means that I am looking into the equation 2 to the

power k theta is equal to theta mod 2 pi. I am looking into mod 2 pi I can just remove

mod 2 pi. And I can simply write the equation 2 to the power k theta equal to theta plus 2

m pi. M can be any integer right.

So, 2 m pi. Now if I look into this equation, if I want to solve this equation, this equation

turns out to be theta equal to 2 m pi divided by 2 to the power k minus 1. Let us look into



all theta which satisfies this particular form. So, we find that theta with this particular

form because my k can be anything, right because k we just started with an arbitrary k.

So, periodic we are looking into periodic points of period k. So, we start with any such

arbitrary period. We find that for different values of m, right and different values of k,

these points will be dense in the circle. Every interval will carry one such point, right. I

take any arc here, it will always carry one such point.

So, these points so, we can say that for this map, right the periodic points are dense in

our set S 1 right that is what my space was. So, the periodic points here are denseness

one, and hence if I say that the union of periodic points, right the union of periodic points

need not be closed. So, the union of periodic points, I can simply reduce here that the

union of periodic points need not be closed. So, I hope this is clear to all of you, but here

when we look into this part, union of periodic points, right is it always true that it is not

closed.

Let us again look back to another example. So, this was maybe I can say that this was

our example one. Let us look into another example here.
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And again, I am going back to our circle. So, again let us look into our circle. And now I

am looking into this mapping, I am looking into this isometry, which was f of theta equal

to theta plus alpha where alpha is a rational  multiple.  So,  basically  this  is a rational

rotation.  Now we are looking into a rational rotation now. And we have all seen this



example earlier, that for this example all points are periodic there exists an n such that all

points of periodic of period n.

So, here there exist an n belonging to n such that all x belonging to S 1, right is periodic

of period n. So, all points so, if you look into the union of periodic points everything is a

union of periodic points, and hence your union of periodic points happens to be A closed

set here. In fact, all the points here this is a very special example where all the points are

periodical.  So,  we want  to  now look into  another  aspect,  where  we look into  some

definition now here. So, we are looking into something else, now this is this example

gives us some kind of motivation, that we can look into something more than periodic

points.

So, what more can we think of periodic points. So, we start looking into this definition.

And so, I am simply taking this as a definition. Let A be a subset of x. A is said to be

invariant subset.
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A is called an invariant subset, if f of A is a subset of A. So now, I can think simply say

that instead of now looking into fixed points of periodic points, now we are looking into

fixed subsets or periodic subsets right. So, we say that we start with a very small case of

we start with just an elementary case here, that we say that A is an invariant subset of x if

f of A is a subset of A.

In fact, we say something more, A is called completely invariant. If f of A is same as A.

Let us try to see what happens in our example here. So, we are looking into an invariant

set here. And we are looking into what do we mean by a completely invariant set. In this

particular  example,  right  we have the whole set  is invariant,  in this  fact x is always

invariant because f of x is always a subset of x, right. In this case it is also completely

invariant f of x is equal to this part, but can I have something more here.

So, supposing now I am looking into say alpha was we know that every orbit here is a

periodic orbit,  right every point is a periodic point.  So, you can find some kind of a

periodic orbit here right. So, we find this factor. And we find that this orbit, if I just look

into this orbit, points from here just move along themselves right. So, here we find that a

single  orbit  if  I  take  a  single  orbit  here,  the  single  orbit  turns  out  to  be completely



invariant. And hence we can simply say that fine this was a periodic orbit right. So, for a

periodic orbit, we have this general case that if I have any p is a periodic point, right. If p

is a periodic point is equal to orbit of p, f of orbit of p is equal to orbit of p this is

completely invariant.

In fact, periodic points can also be characterized by this fact. Because let me try to take

up an orbit of some simple point x.
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So, let me look into orbit of x here. So, how do how have we defined the orbit of x? It is

x fx f square x f cube x, and so on what is f of orbit of x if I term. So, supposing my f of

orbit of x is same as orbit of x; that means, this point x which was missing here, means

somehow somewhere further come up here. If it is somehow further comes up here; that

means, my x is the periodic point right.

So, that gives me that x is a periodic point. So, I can characterized my periodic point as

those points for which their orbit happens to be completely invariant or before that let us

look into another fact here. We know that f of x is always a subset of x, right. Let us look

into this fact f of x is always a subset of x. So, in that sense I can say that, f square x will

also be a subset of fx. And this is a subset of x. So, in that way I can continue this, right

saying that fnx will always be a subset of x. So, if I look into now I am looking into this

fact, that if my x is compact we had not taken this condition on x earlier.



So, if x is compact, then I can look into all these invariant subsets fnx, right. They form a

chain so; the total intersection will be non-empty. So, if I take this intersection of fnx.

This is always a completely invariant subset just the finite intersection property. So, this

is a completely invariant. So, you start with say if your x is compact. There is always a

guarantee that there will be completely invariant subsets. Of course, we cannot guarantee

given  any  set  or  given  any  space  right  given  any  dynamical  systems,  we  cannot

guarantee that  there will  be periodic points,  but for a compact  metric  space you can

always guarantee that there will be completely invariant sets.
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Let us look into another example this time. I am giving an example on the real line. So,

my f is from R to R. And I am defining this f as say f of x equal to. So, this is x plus 2 for

all x less than or equal to minus 1. I am defining this to be minus x for say x lying

between 0 and we define this to be 2 x whenever. So, 0 is less than or equal to x. So, let

us try to graphically understand this function.

So, what happens here is that; this becomes at x equal to minus 1, the value happens to

be equal to 1. So, this is x plus 2, whenever x is less than or equal to minus 1. It is minus

x whenever it is between minus 1 and 0. And it is 2 x, right whenever it is greater than

equal to 0. What are the periodic points for the set? We find that this set has 0 as a fixed

point right 0 is a fixed point. Do we expect anymore periodic points here? I leave it for

you to think about it, now I want to look into something else. So, let me take the set A to



be equal to 0 infinity. Now this is A close set. What can you say about this f of A. What is

f of A is same as A right.

So, your A is completely invariant. Let us now look into this set B. Now this set B is very

typical set. I am defining this set B as 1 minus 2 times n for all n in N union. I want this

point one very special point for me, union the set of all 2 to the power n for all n in N. I

want you to tell me what is f of B. I should understand what B is maybe I will write it

down typically here what is my B. So, my B happens to be if I am trying to write it

down, this happens to be 1 minus 2 n for all n in N right. So, this is like when n equal to

1 this becomes minus 1, right then I have minus 3 I have minus 5 and so on.

So, basically, I am looking into the negative of odds right union I have 1, right union I

am looking into this point again 2 to the power n. So, what I have is I have 2, I have 4, I

have 8, and I have all the powers of 2. This is my set B. Now I want to look into what is f

of B. So, I look into f of B by looking into the first part. Now the first part consists of all

points which are less than or equal to minus 1. And my function there happens to be

equal to x plus 2. So, if  I look into my first  part,  right where is my first  part  being

mapped into. So, my first part here will be mapped into minus 1 is mapped to 1 right.

So, I have this one here union. I am looking into the first part, where is the first part

being mapped to. So, minus 3 is mapped to minus 1, right. Minus 5 is mapped to minus 3

minus 7 is mapped to minus 5 and so on. So, my second part will be basically mapped to

this set minus 1 minus 3 minus 5. So, on what happens to 1, right where is 1 mapped to.

So, we know that when I am looking into 1 it is lying greater than 0. So, greater than 0 I

have the map to be equal to 2 x here. So, this gets mapped to 2, right 2 is mapped to 4, 4

is mapped to 8. And what I get is I retrieve all the powers of 2 here.

So, ideally  what  is  B? What  is  f  of B? It  is  same as B. So, B is  also a completely

invariant subset. Now this is typical analysis which we can try to do. What happens if I

am looking into an invariant subset?
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So, if I take f of A to be subset of a when we say that A is invariant, right what happens

to the closure of A? So, if I look into what is f of A closure, now since my mapping is

continuous, right this will be basically a subset of f of A hole closure, but what is f of A

hole closure, that will always be a subset of A closure.

If I have a to be an invariant set,  it is closure is also it is topological closure is also

invariant. So, A closure what happens when x is compact? Now when my x is compact I

know that A closure is also compact. So, I am looking into this condition f of A closure,

right that will be also be a compact set. Since being a compact set it is also closed. So, f

of A closure is a subset of fa whole closure, but f of A whole closure is closed. It is A

closed subset of A closed set, what happens in that case? F of A closure is equal to f of A

whole closure, right and f of A whole closure is basically equal to A closure.

So, my A closure is a completely invariant set. So, one thing is sure here, that when I talk

of any orbit x, right my orbit x is supposing I am in a compact space, or in that sense if I

am not in a compact space if I only assume my a to be compact, right. Even in that case

your A closure happens to be a completely invariant  set  right.  So,  for compacting A

closure is a completely invariant set in particular I am looking into my orbit of x. So, my

orbit of x is always invariant in a compact metric space ordered x closure is completely

invariant. And in case my x happens to be a periodic point orbit x closure happens to be a

compact set right.



Basically, it is a completely invariant set, right. We can just reduce from this part. So,

orbit x closure is completely invariant. So now, we are trying to look into all subsets of x,

right such that we these are the smallest closed invariant subsets. So, we are interested in

what do we say about this set. So, how do we define this set? So, I know that my x is

definitely invariant right. In fact, if my f is on to I can say that f is completely invariant.

So, we know that x is invariant we can always find an invariant subset of x, right. If I

take an invariant subset supposing say my A is invariant.
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And if I take any x belongs to A, then I know that orbit of x will always be a subset of A

because A is invariant.

Orbit of x is a invariant subset which is always contained in the invariant subset A. Now

I am interested in looking into those subsets such that none of that none of their subsets

happen to be invariant. So, we are looking into subsets, we would to look into that part

this is the smallest possible invariant set, in the sense we want not we can not use the

word smallest in possible. You can say that this sets how with this sets will have the

property that they are minimal with respect to be invariant. Nothing smaller than them

can be invariant, right they are minimal with respect to being invariant.

And so, we call such subsets as invariant. So, such sets are called minimal sets, what do

we mean by minimal sets is again they are having mean they are minimal with respect to

being invariant. No proper subset can be invariant, they are minimal with respect to be



invariant. So, we start with the preposition here, let A be a subset of x, then we say that A

is minimal if and only if for every x belonging to A, A is the same as orbit closure of x.

In particular I can say that if x itself is minimal, it means I do not have any proper subset

of x, which is invariant, then x will be equal to the orbit closure of each and all of every

of it is point.

And the proof of this is very, very simple here. So, if I try to look into the proof of this

fact right. So, what happens now? If I assume that A is minimal, what does that imply? If

x belongs to A, right of course, I want here something else x A is a subset of x my A is

closed here right. So, I am just looking into this fact closed a right. You looking into

closed subsets. So, x is in a right; that means, my orbit closure of x is also a subset of A.

Now my orbit closure is always a complete invariant set, but A is minimal. So, orbit of

closure of x has to be equal to x right. So, this is a subset of A, but then this has to be

equal to x because A is minimal.

So, this implies that orbit closure of x is equal to a it cannot be smaller than a it has to be

equal to A. On the other hand, if for every x in A, A is equal to orbit closure of x, what

does that give you? Supposing I am assuming that A is not minimal, right. Then that

means, that suppose A is not minimal, then I have a B subset of A. Which is minimal or

B subset of a which is invariant. So, a B such that f of B is a subset of B, but f of B is a

subset of B what does that mean? I take any point in B x belongs to B right. So, if x

belongs to B that would imply that, orbit of x closure when I am taking B to be again A

closed subset  of A,  orbit  of B closure is  contained in  B. But what is  the orbit  of A

closure? It is same as n right. Then B we have already taken to be subset of A. So, this

implies that B is nothing but equal to A. So, that means, that there is no subset of a

proper subset of A which can have this property of being invariant. And so, A is minimal

right.

So, we can prove that A is minimal. Let us try to take here an example of a minimal

system. So, we take us example where the full x is minimal. In fact, from here you can

always guess that, if I look into periodic points if I look into periodic orbits, right they

are all  minimal  subsets.  Because if  I  look into one periodic  orbit,  right.  There is  no

proper subset of it which is invariant. So, periodic orbits are always minimal subsets.

And now we look into the case we look into the example where the full space x happens



to be minimum. I am not going further I am not looking into any example which we have

not discussed earlier.
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So, let us try to look into backend of a circle. So, I lost count of what number example

was it.  So, I am just saying that this is my example. So, you look into this example,

where my theta f of theta happens to be equal to theta plus alpha. Where alpha is an

irrational multiple. So, I have this theta plus alpha, alpha is an irrational multiple of 2 pi.

So, this is basically my irrational notation. Now I am having an irrational rotation here.

And for this irrational rotation, we have already seen this example earlier; that for this

rotation every point of the orbit of every point is dense right.

So, for all theta belonging to S 1 we have seen that orbit of theta closure is whole of S 1.

We have seen this fact only orbit of theta is dense here. So, this is typically an example

of a minimal system. So, this system is minimal.

So, we stop today here. If you have any difficulties or something maybe we can discuss

that.


