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Chaos in Toral Automorphisms

Welcome to students. So, in the previous class we had looked into toral automorphisms.

We had seen some properties of toral automorphisms like what are the basic periodic

points, and also that they are topologically transitive. So, as such toral automorphisms

tend to be chaotic systems. But today we will be looking into more aspects of chaos of

toral  atomorphisms.  Now  since  this  is  some  kind  of  a  homeomorphism  in  a  2-

dimensional space. So, this is this forms a very nice example of a chaotic system in 2

dimensions.

So, let us now recall toral automorphisms. And we can look into the general definition of

toral automorphisms.
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So, let x be say R n upon Z n. So, it is basically T n denoted as T n be any n torus or be

an n torus, because there is only one n torus. So, this is an n torus for any n you can think

of any n in z a n greater than 1. And let A equal to A ij be an n cross n matrix with

integers  with  entries  in  z,  and with  determinant  of  A not  equal  to  0.  So,  this  is  an

invertible matrix that we are looking into with integer entries.



Now, we can define for such an A n for R n we know that any matrix will give us a linear

transformation on R n. So, define a linear map say l from R n to R n as l of you have this

vector x 1 x 2 xn is basically a of x 1 x 2 xn. Now you know that very well any linear

transformation in a final dimensional space can be given in terms of a matrix. Now since

a is an integer matrix it maps z onto itself. So, A maps I should say that if I have Z n

right, A maps Z n to itself, and since A map Z n to itself, we can think of A as allowing us

to define a linear transformer allowing us to define a transformation on the n torus.

Let T equal to T A, right from T n to T n, we defined as T of say I have x 1 x 2 xn

transpose is same as a of x 1 x 2 xn transpose mod 1. So, this gives us so, we look into

this particular mapping and we first check that this mapping is well defined.
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So, T is indeed well defined. Since if i have x and y belonging to R n such that they

determine the same point in T n, then A x mod 1 will be same as A x A y mod 1. The

reason here is supposing x and a x and y are 2 points in R n which determine the same

point in T n; that means, I can write my x as say y plus some integer m, and hence they

will be basically since these they differ by an integer right.

So, they give you the same point in T n. And then you apply a on both the sides, you get

A x equal to a of y plus m, which basically happens to be equal to A y plus A m and if

you look into am this is all having integer coefficients right. So, if I try to take mod 1

right.  So,  this  becomes A y mod 1 right.  So,  this  disappears  in  that.  So,  if  2  points



determine in R n determine the same thing. So, this basically this mapping T is well

defined.  So,  this  mapping  T  is  a  linear  endomorphism.  So,  T  is  now  a  linear

endomorphism, but if we look into general T right, T need not be invertible. The reason

is the way we have defined T right, T heavily depends on A and the entries of a are all

integers right. That is what is actually helping us in saying that this a right is basically

mapping points of T n into T n.

But if we try to look into T inverse, right T inverse need not be i mean T need not be

invertible, because T inverse would basically come up from some matrix A right, if you

are looking into the linear transformation. It would come up some some matrix A which

need  not  have  integer  coefficients,  but  the  scenario  completely  different  if  we  take

determinant of A to be plus or minus 1, right. In that case your A inverse will also have

integer coefficients or sorry integer entries. So, we see that this T this map T is in general

not invertible; however, if your determinant of A is plus or minus 1, then A inverse exists

and is an integer matrix.

And what can you say about T inverse? Then my T inverse x 1 x 2 xn can be written as A

inverse. So now, we have an invertible endomorphism right. So, we can say that our T is

a linear toral automorphisms. So, T is a linear toral automorphism. And we now want to

look into whether this is a hyperbolic toral automorphism or not, and we have seen this

earlier. So, we say that T is a hyperbolic toral automorphism, if A has no eigenvalues of

absolute modulus value one. So, in that sense we say that T happens to be a hyperbolic

toral automorphisms. And as we had seen in the previous lecture, that a hyperbolic toral

automorphism is devaney chaotic.

What we will try to see is again we will try to look into the chaos of a hyperbolic toral

automorphisms, what we will try to determine is what is the topological entropy for a

hyperbolic  toral  automorphism. In fact,  what we are not going to look into is that  a

hyperbolic toral automorphism can also be conjugated with say if i have an n torus then a

hyperbolic  toral  automorphism can be conjugated  with the symbolic  system on in  n

symbols,  and  that  gives  you  like  lot  of  properties  because  you  can  think  of  lot  of

properties over there because again we know that our symbolic system is some kind of A

invertible system, right. And if you are looking into a sub shift of finite type we know

that it has various other properties.



So, we can think of conjugating this to in n dimension is in in a symbolic system in n

words in an a let, sorry alphabet of set n. But we are not going to get so much into details

here. All we will look into what is the topologically entropy of a toral automorphism.

Now as such for  any dimension we can calculate  this  part,  but  it  becomes easier  to

demonstrate it in case of 2 dimension. Our eyes are more used to seeing 2 dimension.
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So,  what  we will  do is  we will  look into  the  simpler  case  of  a  2-dimensional  toral

automorphism.  So,  we  start  with  a  simpler  case.  So,  we  look  into  the  simpler  case

hyperbolic toral automorphism. For that we need some let us build up some notations.

So, let A cross A sorry a 2 cross 2 B of matrix.

So, let it be a hyperbolic matrix with integer’s entries. And determinant of A is plus or

minus 1. Let lambda 1 and lambda 2 with mod of lambda 1 greater than 1 and mod of

lambda 2 less than 1 be the 2 eigenvalues of A. And let v 1 and v 2 be the corresponding

eigen vectors. So now, as we have seen what happens here is that you have T from T

square to T square defined as say you have x 1 and x 2 and under T they are mapped to A

times x 1 and x 2 mod 1.

So, this is a hyperbolic, toral automorphism. Now we will try to see a theorem here, and

that is what we are going to do in this particular class.
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So, we look into the theorem, the topological entropy of the 2-dimensional hyperbolic

toral automorphism is given by log of lambda 1 or I should say log of modulus of lambda

1. So, the topological entropy of a toral automorphism is log of mod lambda 1. And since

lambda 1 happens to be the larger eigenvalue of a toral automorphism. We know that the

topological entropy is positive and hence the hyperbolic toral automorphism is chaotic.

So, let us now look into the proof of this part. Now we know that we can start with our

topological entropy we can start the definition with either of the 2 definitions we can

either use the Adler’s definition, since this is a torus is a compact metric space, we can

either use the Adler’s definition or we can use a Bowen’s definition. But here it will be

easy for us to use the Bowen’s definition.  So, we will use the Bowen’s definition of

topological entropy.

So now for Bowen’s definition, all we need to find out is some n epsilon separated sets.

So, let us start working it out. So, we first fix an epsilon. Now we can cover T square by

epsilon balls centered at a finite set, say my finite set is x 1 y 1 xk yk. Now when we are

looking into epsilon balls this is our T square is gone factor i. So, it will have a finite

epsilon net, but when I am looking into covering it by epsilon balls. I am defining my

balls not using any matrix. So, as a different kind of metric that we are trying to use over

here or I would say that the definition of balls here is slightly different from what you

could see as an ordinary say ball of radius epsilon centered at this points.



We are taking a slightly variation we are taking some variation in the definition. So, how

do we define a ball here is; see, around each point x 1 y 1, say around each point xi yi for

each of this I we define a box. So, my box is Bi which is basically xi yi plus alpha times

v 1 plus beta times v 2, such that minus epsilon is less than or equal to alpha beta is less

than or equal to epsilon. So, this is a kind of box that we are using. So, one can think of

this in terms of say, we now have at each point we have 2 directions, right. We have this

linearly independent directions v 1 and v 2, and along is each of these directions what we

are trying to do is we are trying to take minus epsilon; epsilon around one direction

minus epsilon; epsilon on another direction, that gives us a kind of a box.

And we can think of very well we can think of this to be defining our open spheres, right.

And as we know that our space is compact, there are finitely many of them which cover

the  whole  torus.  So,  here  my  v  1  and  v  2  are  eigenvectors  corresponding  to  the

eigenvalues. Now we keep in mind that when I am talking of lambda 1 my mod lambda

1 is greater than 1 and lambda 2. So, here in my mod lambda 2 is less than 1. We know

that these boxes right. So, we can think of this as an epsilon net x 1 x 1 y 1 xk yk. And

so, these boxes Bi can be taken to cover T square, right.

So, how many number of boxes you have? You have number of boxes your boxes are

covering here T square they are covering your torus. So, let us try to see how a typical

box is. 

(Refer Slide Time: 20:55)

 



So, say we are looking into so, for example,  this is our unit square. And in this unit

square we are typically having supposing, this is my point xi yi, then I have 2 directions

and in both these directions. I am looking into minus epsilon epsilon. So, this is basically

giving my box Bi. So, this is my box Bi and then along any every such point, right. I

would be having some such boxes right covering the whole of torus, right. We can think

of such boxes covering the whole of torus.

So, these boxes they cover the whole of torus. And we have a typical box Bi where you

have one direction. So, you have this longer direction basically in the direction of v 1,

right. The shorter direction is basically in the direction of v 2. So, typically I can write

my Bi. So, supposing this is the box Bi. So, this is basically the box Bi, and we have this

point x 1 y 1 lying over here xi yi lying over here. So, you have xi yi lying over here, and

we know that this is basically the direction of v 1. And this is basically going in the

direction of v 2, right. And we may not have seen this, but what we will try to do here is,

when we take our very eigenvectors v 1 and v 2.

Let us also assume that the magnitude of v 1 is 1. And so, is the magnitude of v 2. So,

basically let us take our eigenvectors to be unit vectors right. So, we can start with our

eigenvectors to be unit vectors. So, that we do not have to worry about whatever length it

is right this. So, these are unit vectors; however, for us what is important is the direction.

So, we start with them our eigenvectors to be unit vectors, we have this boxes Bi and

now let us consider the set of points Ci. So, consider the set of points Ci, where i am

defining my Ci to be the set of all points of the form xi yi plus j times epsilon upon mod

of lambda 1 to the power k in the direction of v 1, such that your j lies so, j takes all the

values between you have minus now you are looking into. So, you have mod of lambda 1

to the power k. You are looking into the integer value of mod of lambda 1 to the power k.

So, from minus integral part of mod of lambda 1 to the power k to the integral part of

mod of lambda 1 to the power k, you have these many points. So, these are basically 2 k

plus 1 points, right. So, you are looking into these points here. Now sorry, not 2 k plus 1

this would be exactly 2 times mod of integral part of lambda 1 to the power k plus 1.

So, you are looking into these points we are considering these points Ci. Now what are

this points Ci over here if I want to see that. So, basically in the direction of v 1 right we

have this points here right. So, these are the points in the direction of v 1. So, basically,

we are looking into these points. So, our Ci basically typically is a subset of Bi it is in the



box. So, all this points Ci are from the box Bi and what is the cardinality of Ci. So,

looking to the cardinality of Ci. The cardinality of Ci turns out to be twice the integer

value of mod lambda 1 to the power k, right plus 1.

So, is basically the cardinality of each Ci. Now we want to claim something. 
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So, what we claim here is take C to be the union of all such Ci. So, looking into Ci with i

going from one to k. So, C is a k twice epsilon separated set for T square T. So, want to

be claimed and this happens to be a k twice epsilon separated set to see to we first prove

this claim. So, we note that for any point z w and T square we can choose some, i say we

know that we have this k boxes right. So, basically our z w will be lying in one of these

boxes right.

So, we can choose some i such that your z w lies in this box Bi because Bi is cover the

torus.  And so,  since the  property of vi  is  it  contains  all  those points which are at  a

distance alpha times v 1 plus beta times v 2 from xi yi. So, we can say that your z w is xi

yi plus alpha times v 1 plus beta times v 2 for some alpha beta which lies between minus

epsilon and epsilon. So now, we are fixing our alpha and beta also, depending on this

point z w. If we choose our j such that we are choosing your j between minus lambda 1

to the power k integer value of mod lambda 1 to the power k less than or equal to j less

than or equal to integer value of lambda 1 to the power k.



If you are choosing your j between this part right, or I should say in in this range right,

such that your mod of because you have already fixed an alpha here. So, your mod of

alpha minus j times epsilon upon mod of lambda 1 to the power k, if I am looking into

this modulus. So, this modulus is less than or equal to epsilon by 2 mod of lambda 1 to

the power k. Supposing, I want to choose this j such that this inequality is satisfied. Now

if you look back into our figure, this you can always find such a j, right. Because your z

w lies somewhere over here right.

So, you have these points j. So, these are basically a points j right. And since they will be

lying  somewhere  over  here,  I  can  choose  that  particular  value  of  j  for  which  this

inequality is satisfied. So, this is possible. And then we will let now I am taking my point

z j wj to be equal to this xi yi plus j times epsilon upon mod lambda 1 to the power k

times v 1. So, if I chose this part, then this point with this particular coefficient this j

here, right. This will be basically a point of Ci. What remains to see is that this happens

to be a separated set. So, take any z w in Bi, right you have some j right for a any z w in

Bi you have Aj for which this inequality satisfied.  And in that case, you can always

choose a  point  zj  wj  right  in  Ci  which  is  basically  having,  which  has  basically  this

equation right. So, it is basically your point zjwj can be fixed, right for a given j, once

you know what is your z w.

So now given a z w basically given as z w we are choosing a zj wj in Ci, or in C. Now

since your z w could be in any Bi, right for any z w in the torus, you have a point here

fixing a point of C. Now for what happens is 0 less than or equal to r less than or equal to

k, what happens here is we have Tr of z w is basically Tr of zj wj, right plus I have alpha

minus j times epsilon upon mod lambda 1 to the power k times a to the power r v 1 plus

beta times a to the power r v 2. So, this is basically my Tr z w. And hence if I am looking

into this equation. So, I want to say that this is basically this equation. 
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And according to this equation what is my mod of Tr z w minus T to the power r zj wj?

This modulus would be less than or equal to now we again come back to this equation

right.

So, I am taking this on the other side what is this modulus. So, this modulus will be less

than or equal to modulus of this part. But now if I look into my v 1 and v 2, these are

both are linearly independent right. So, the modulus of this vector will be basically less

than or equal to I can take the modulus of this and take the modulus of that. Again, your

v 1 happens to be a eigenvector for A r right. So, A r v 1 would be same as lambda 1 to

the power r v 1. And A r v 2 would be same as lambda 2 to the power r v 2.

So, what happens here is what is this modulus, this modulus is less than or equal to we

have this modulus of alpha minus j times epsilon upon mod lambda 1 to the power k

times lambda 1 mod lambda 1 to the power r, plus mod beta into mod of lambda 2 to the

power r we have already taken over v 1 and v 2 to be unit vectors. So, the modulus of

them will be 1. So, what is this less than equal to i can say that this would be less than or

equal to we have already taken what is this part, right we have already assumed that we

are choosing our j. So, that this particular modulus is less than epsilon by 2 mod lambda

1 to the power k.

So, what we have here is this is less than or equal to say epsilon by 2 mod lambda 1 to

the power k, into mod lambda 1 to the power r plus you have mod of beta right to the



power lambda mod lambda 2 to the power r into mod lambda 2 to the power r. Now think

of this factor, your lambda 1 to the power r upon lambda 1 to the power k, right this

quantity is less than 1. This is basically mod lambda 1 to the power or I should say 1

upon mod lambda 1 to the power k minus 1. This quantity is less than 1. So, I can say

that this would be less than epsilon by 2, what happens to this quantity? We know what is

our bit where is our beta lying it is lying between minus epsilon to epsilon.

So, mod beta at the most you can have value epsilon. And if I look into mod lambda 2 to

the power n right mod lambda 2 is less than 1. So, mod lambda 2 to the power r is also

going to be less than 1 right. So, this is less than epsilon right and in all we can say that

this would be less than twice epsilon. So, what we have here is that our C happens to be

hence C is a k twice epsilon separated set. And now what is the cardinality of C? So, if

you look into the cardinality of C. So, the cardinality of is at most twice right we have

seen what is the cardinality of Ci.

So, the cardinality of Ci happens to be at most integer value of lambda 1 to the power k

plus 1, right. This was the cardinality of Ci. But sorry, but if i look into what is the

cardinality of C there will be k such Ci right. So, the cardinality of C happens to be this

factor, which gives an upper bound of we know that we want to look into the maximum

cardinality of an k twice epsilon separated set. So, this gives an upper bound for that

maximum cardinality. So, k epsilon T, right of the k twice epsilon separated set in T

square right.

So, in the torus, and hence what we have is the topological entropy happens to be equal

to limit as epsilon tends to 0, right limit as k tends to infinity, right I have 1 upon k log of

r k, sorry this is twice epsilon epsilon T. And this turns out to be less than or equal to

limit as epsilon tends to 0 limit as k tends to infinity you have 1 upon k times log of,

because this quantity is having this as an upper bound right. So, I have log of k times 2

twice integer value of lambda 1 to the power k plus 1. And if I want to look into that

factor right if I try to take this limit as epsilon tends to 0, and this limit as k tends to

infinity, this turns out to be equal to log of mod lambda 1.



(Refer Slide Time: 39:28)

And so, the result that we have here is that your entropy of T is less than or equal to log

mod lambda 1.  Now this  is  one  way right,  as  we have seen this  is  just  in  a  single

direction. We will try to look into this inequality the other way round also. What we had

done is  that  we had found out the upper bound for n n 2 epsilon for  a  k 2 epsilon

separated set, we can find similarly we can find a lower bound also. So, that would give

us the reverse inequality. So, we fix an xy in T square, and for epsilon greater than 0 and

k greater than equal to 1, we consider D to be equal to the set of all xy plus say j times 2

epsilon upon mod of lambda 1 to the power k times v 1, right. Such that your j varies

from minus integer part  of mod lambda 1 to the power k to the integer part  of mod

lambda 1 to the power k.

Let us look into this set d. Now our claim here is D is a k 2 epsilon upon mod lambda 1

to the power k separated set. So, take any 2 distinct points a 1 and b 1. So, take 2 distinct

points say a 1 b 1 and a 2 a 2 and let 0 less than or equal to r less than or equal to k minus

1. So, what we have here is mod of T to the power r a 1 b 1 minus T to the power r a 2 a

2 this is basically a mod of I am looking into this factor it is basically mod of j. So, I

have this a 1 b 1 and I can write my a 1 b 1 as this factor right some j here.

So, this is basically j times 2 epsilon upon lambda 1 to the power k a 1 b 1. And I can

take my a 2 b 2 to be basically this plus i times 2 epsilon upon lambda 1 to the power k.

So, this would be some j minus i times 2 epsilon right upon mod lambda 1 to the power



k, right into T to the power r of v 1. And this we can very well  see that this would

basically be should say it would be less than or equal to or basically this will exactly be

equal to this is twice, now I had twice mod j minus i epsilon, right I have lambda 1 to the

power k here.

So, and I have this is again lambda 1 to the power r here. So, this would be upon mod

lambda 1 to the power upon k minus r. So, I am see thinking of this part. So, this would

exactly be equal to this factor. So, if I take my set s. So, if I look into my s k epsilon T,

this happens to be the cardinality of D. And the cardinality of D is twice, right again I

have integer value of lambda 1 to the power k plus 1, right is a lower bound of a k

epsilon separated set. I can think of because this was just a constant k epsilon separated

set in T square.

And hence what do we have here now?
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So, the entropy of T is basically limit as epsilon tends to 0 limit as k tends to infinity 1

upon k log of s k epsilon T can think of that part. And that becomes greater than equal to

because I just know a lower bound for this term. So, this becomes greater than equal to

limit as epsilon tends to 0, limit as k tends to infinity, I have 1 upon k times log of twice

integer value of lambda 1 to the power k, right plus 1. And this is basically our log mod

lambda 1.



And hence from this equation we get that the topological entropy of T is greater than or

equal  to  log  mod  lambda  1.  You  look  into  this  fact  the  first  time  we  proved  that

topological entropy of T is less than or equal to log mod lambda 1. Now we have a result

saying that topological entropy of T should be greater than equal to log mod lambda 1.

And that proves that topological entropy of T is basically equal to log mod lambda 1.

Where  lambda  1  happens  to  be  the  eigenvalue  with  modulus  greater  than  1  for  the

hyperbolic matrix A. And I hope this is clear to all of you. So, your hyperbolic toral

automorphism is a chaotic system. We look into more chaos in the next class. 


