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Welcome to students; so, we have looked into dynamical systems on the real line and we

have looked into dynamical systems in general. What we have observed is that in the real

line;  chaos  basically  comes up because  of  the non-linearity  of  the system.  So,  what

happens  in  case  of  linear  systems?  Can  we  really  experience  some  chaos  kind  of

properties for linear systems?

So, to know the answer you can move into one dimension higher of course, you can

study linear system in any dimension, but we will be specifically restricting ourselves to

study of linear systems in two dimensions. So, we are looking into linear systems in two

dimensions.
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And we can say that  you think of L to be; say from R square to R square,  a linear

transformation.  So,  typically  we  can  write  L  as  L  of  x  y,  since  this  is  a  linear

transformation this would be something of the form ax plus by and cx plus dy.



So, this basically can be written as the matrix a b c d; multiplied by the vector x y. So, for

any vector v in R square we can say that; L of v is some matrix A of v; where A is some

two by 2  matrix  say  a  b  c  d.  Now we  are  interested  in  the  dynamical  system;  so,

supposing we are looking into  this  dynamical  system;  R square and L,  then  we are

interested in computing the orbits here. So, basically for the system R square L; we are

interested in the orbits, so we have v; L v; L square v and so on.

So, we are interested in this particular orbit; for each v in R square, but if I try to look

into what is v, L v because; your L v can always be defined as A times v. So, basically

this turns out to be the orbit, this turns out to be the set and what is that set? So, we have

v; A v, A square v and so on. 

So,  we are  only  interested  in  computing  this  set,  so  ideally  in  order  to  study linear

systems in two dimensions  or maybe in any dimension;  whenever  we want to  study

linear systems, we are basically interested in computing; the power of the matrices and

when we want to compute the power of matrices,  everything your entire  problem of

finding the orbit first of all reduces to finding the power of the matrix.

So, what is important over here is to find out how do we compute A to the power n. So,

let us look into this aspect; now this is something which is trivially done in a say advance

course on linear algebra. But since I know many of you will not have that background, so

we are going to do some basics today. So, that is what is the intention of this lecture; we

will be looking into basics of how to compute a to the power n for various n and we are

restricting ourselves again to 2 cross 2 matrices; though in general the theory holds for

any dimension.

So, let us look into this concept; this aspect of computing A to the power n.
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So, we are interested in computing A to the power n for that; we realize that suppose I

have  a  matrix  A.  So,  consider  this  matrix  A now;  now  I  am  not  looking  into  the

dimension because this general theory is true for any dimension. So of course, we are

interested in square matrices, so we are looking into a matrix A and the characteristic

polynomial of this matrix A.

So, the characteristic polynomial is basically I can think of this as P A lambda; which is

given as the determinant of A minus lambda times I; where again you are looking into

the  same dimension  as  A and this  is  a  characteristic  polynomial  and the  0’s of  this

polynomial are called characteristic values or maybe the Eigen values.

Now, this is which something everybody knows and we also know that associated to

each Eigen value lambda of A is a non-zero vector say U; such that A times U is just

lambda times U. In fact, many times we compute the Eigen values with respect to this

term because U is a vector for which this equation is satisfied. So, looking into any such

combination if you get a vector U; such that au equal to lambda times U, then you say

that  this  happens to  be lambda is  your Eigen value and then such A U is  called  an

eigenvector.

So,  U  is  an  eigenvector  corresponding  to  the  Eigen  value  lambda.  So,  U  is  your

eigenvector  corresponding to  Eigen value lambda and this  is  basically  your structure

what else can we say about matrices? So, we also have this concept of similar matrices.



So, we say that the matrices A and B are said to be similar, if there exists a nonsingular

matrix P such that your P inverse A P is B.

So, two matrices are similar; if there is a way of transforming one matrix to the other

metrics via nonsingular matrix.
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And  this  is  something  which  I  think  everybody  knows  quite  elementary  that  this

similarity of matrices is an equivalence relation. What do we mean by that? Well you

know that A is always similar to itself and then we know that if A is similar to B; then

implies B is similar to A; can you B easily seen, A can be written as P A; P inverse and

again this is again some extrapolation. Here we know that; if A is similar to B, B similar

to C that would imply that A is  similar  to C, it  just  substituting B in that particular

situation.

So, we know that this is already we know that this happens to be in equivalence relation.

So that means, if you want to just look into some property of matrices; it is enough to

consider the equivalence classes and just one element from each equivalence class. Then

there is another aspect to the switch, perhaps we all know that is that if A and B are 2 and

B; they are two similar matrices, then they have the same Eigen values.



Of course, eigenvectors need not be the same, but they definitely have the same Eigen

values and its very simply to see this one. Because if I have this P inverse A P to be equal

to B; then I can write my A as P; B P inverse.

Now, suppose your A of v equal to lambda v; then what we know here is that A of v will

be equal to P; B P inverse of v and this is going to be your lambda v. So, if we forget this

first part; we just look into the second part that would give us that P of B of P inverse v is

same as lambda of P inverse v.

So, basically you have a vector a nonzero vector satisfying this equation P of U equal to

lambda U and hence lambda happens to be the Eigen value. So, when we are trying to

look into computing because we are more interested in computing A to the power n. We

want to  look into study of  similar  matrices,  we try to  look into  something more on

similar matrices.

Now this is something which I am going to prove; this is an very elementary theorem

because we are doing it for two by two, but this is true for any general n dimensional

matrix. So, basically any n cross n matrix and you can see that in various books, but

since this is not been covered for you at your level, I will be looking into this particular

theorem.

So, I look into this theorem and we will basically we throw in this theorem.
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Because that will help you in trying to see how to work out with these ideas, so let A B; a

2 cross 2 matrix; then A is similar to one of the following. Now what are these ones? So,

the first case here happens to be a matrix of the form lambda 1 is a diagonal matrix, with

diagonal entries lambda 1 and lambda 2. So, this could be one case; the second case

could be a matrix of the form lambda 1, 0 lambda. The second case and the third case; it

could be a matrix of the form say alpha beta minus beta and alpha this could be the third

form.

So, we want share that any 2 cross 2 matrix is similar to one of these and actually this is;

what is the theory of Jordan. So, these are basically called the Jordan forms, so these are

the Jordan forms and as I said that; this can be considered for any n cross n matrix.

So, let  us try to look into the proof of this  theorem. So, look into the proof of this

theorem; we start with our matrix A. Now, since we know that all similar matrices will

have the same Eigen values; we are looking into the Eigen values. Now A is A; 2 cross 2

matrix, so if you look into its characteristic; polynomial characteristic, polynomial will

have degree 2 and we know that very well that is polynomial of degree 2 can have at

most two roots. And since we are working with a real polynomial now, it is possible that

our two roots are complex root.

So, we are looking into the first case; where we have two roots and both the roots are

real. So, suppose that the Eigen values; let me name this Eigen values. So, this Eigen

values are lambda 1 and lambda 2; so, these are the 2 Eigen values of A and these are

both real. Now, first case is the characteristic polynomial; it has both real roots; so I have

real case.

Now, when lambda 1 and lambda 2; there are two real roots, there are two possibilities

either they are equal or they are not equal. So, let us assume first of all that lambda 1 is

not equal to lambda 2. So, we have this lambda 1 not equal to lambda 2; think of that part

now, this is something which is very elementary and which everybody knows that; if the

Eigen values are not equal the corresponding eigenvectors, will be linearly independent.

So, in this case; so let me write this case; so in this case the corresponding eigenvectors.

So, let me name the corresponding eigenvectors the corresponding eigenvectors is v 1 for

lambda 1 and v 2 for lambda 2 are linearly independent. So, we know that these are now

linearly independent; what we try to do is; we try to form a matrix out of these vectors.



So, we make take a column of linearly independent vectors and try to form a matrix and

we very well know that such a matrix will turn out to be nonsingular. So, let P B; the

matrix may looking into this particular matrix v 1, v 2. So, this is the matrix with column

says eigenvector and then we very well know that P is non singular.
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Suppose, now I am interested in looking into this case, what is P inverse A P? What is

this going to be equal to? So, we know that this is all I am taking multiplication of 2

cross 2 matrices. So, the resultant will also be a 2 cross 2 matrix, so let me take this to be

equal to; I am calling this to be J and that this J be equal to say e, f, g, h; already our A B;

we are taken up to be a, b, c, d; so does not matter, we can take this to be e, f, g, h.

So, suppose P inverse A P happens to be e, f, g, h, so what does that mean? Now, so if I

look into A times P that happens to be equal to P times J. Now let us look into P A; my P

happens to be v 1 v 2, so I am looking into the spot. So, what is my A v 1; take this

multiplication A v 1, I can take the similar multiplication here because my P is v 1, v 2

and we have already taken our J to be e, f, g, h. So, in that case your A v 1; it turns out to

be equal to e times v 1 plus g times v 2.

Now, A v 1; we very well know v 1 happens to be an eigenvector corresponding to the

Eigen value lambda 1. So, your A v 1 will actually turn out to be equal to lambda times v

1. So, we have lambda 1 times; v 1 is equal to e times v 1 plus g times v 2, what do we

know about our vectors v 1 and v 2? These are linearly independent. So, if I try to look



into these equation; this equation will tell me that e should be equal to lambda 1 and g

should be equal to 0.

So, your e happens to be equal to lambda 1 and your g is basically equal to 0. So, we

found out the values of e and g; we can similarly find out the values of f and h. So, all we

need to look into is what is your; A times v 2? So, your; A times would turn out to be f

times v 1 plus h times v 2; f times v 1 plus h times v 2. We already know that v 2; again

is an eigenvector corresponding to the Eigen value lambda 2. So, A times v 2 happens to

be equal to lambda 2; v 2. So, lambda 2 v 2 is basically f times v 1 plus h times v 2.

Now, again the same condition linearly independency of v 1 and v 2 that gives us that f

should be equal to 0 and your h should be equal to v 2. So, what we get here is we get

that our J which was a similar matrix to A happens to be equal to lambda 1, 0, 0 and

lambda 2. So, if lambda 1 is not equal to lambda 2; we find that this matrix A is basically

similar to a matrix of the form 1; what happens if lambda 1 is equal to lambda 2?
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So, I am looking into lambda 1 equal to lambda 2; it is quite possible that we may have

two Eigen values to be the same because we are looking into the multiplicity of lambda 1

the characteristic equation.

But then it is also possible that, but in this particular case; we may have the Eigen space

corresponding  to  this  lambda;  what  have  dimension  to;  so,  we can  get  two linearly



independent vectors v 1 and v 2 corresponding to the same Eigen value lambda. So, let

the first case we look into is; let me write it here 1, the first case we look into is let

lambda 1 is equal to lambda 2; let that v equal to lambda and let v 1 and v 2 be 2, non

empty linearly independent eigenvectors corresponding to this Eigen value lambda.

Now, we know that what is an Eigen space? Because we have only one Eigen value; this

Eigen value has an Eigen space and the Eigen space here, we are assuming to be equal to

2; it is only 2 because we are working with R square, so it is only 2. So, this Eigen space

is 2 and we have 2 linearly independent vectors lambda v 1 and v 2. So, again what we

do is this reduces to the previous case, the previous case we had v 1 and v 2. 

So, we can take P to be equal to v 1 and v 2 that is a nonsingular matrix and then what is

your P inverse AP? So, that would be a matrix J and this matrix J would not turn out to

be equal to; you can use the same method here. It gives you the matrix 0 lambda; so it is

again  a  diagonal  matrix,  now with the diagonal  entries  0  lambda  because  here  your

lambda 1 turns out to be equal to lambda 2; which is same as lambda.

So, this reduces to again the first case; the previous case what happens when lambda 1 is

equal to lambda, but the dimension of Eigen space is 1? What happens in that particular

case? So, we look into the second case here. So, we have let  lambda 1; the same as

lambda 2 the same as lambda and let v 1 be the only vector with A times v 1; equal to

lambda times v 1 and any other vector  satisfying this  equation.  So, when I  call  this

equation basically I am in this equation.

So, any other vector satisfying this equation is linearly dependent to v 1 so; that means,

now I have an Eigen space with dimension 1; what happens in that particular case? So,

when we try to look into that particular case, we solve this equation. So, in this case what

is the equation that we solve? So, solve this equation that; so we have this equation A

times. 

So, we consider this part; I am just looking into this part, we have this equation A times v

1 is lambda times v 1; which is same as saying that I am looking into A times; A minus

lambda I. So, this is again my matrix when I apply this to v 1, this basically turns out to

be equal to 0.



So, what I have here is that A times lambda I in the direction of v 1 is not giving me

anything, it is equal to 0. So, we are now interested in looking into something else, so

you want to solve this equation. So, we solve this equation which I am saying that A

times lambda I; v 2 is equal to v 1 for some v 2 belonging to R square. So, what we try to

do here is 1; A minus lambda I; v 1 was bringing A minus lambda I to 0; what we want to

do is we want to take up v 2 such that it brings A minus lambda I onto v 1.

So, we try with this particular matrix; we try with this particular solution v 2. So, what

do we have here is; so the equations we have here is A times v 1 is lambda times v 1 and

A times v 2 happens to be equal to lambda times v 2 plus v 1, we have basically this set

of equations.

Now, if we try to look into this particular v 2; this v 2 is not an Eigen value, not an

eigenvector  for  A,  but  there  is  something  interesting  to  v  2  is  that;  it  is  linearly

independent v 1; v 2 and v 1 are linearly independent. And then, if you look into v 2;

what you get here is it specifically satisfying some kind of a generalized condition for

Eigen vector. So, it is not an eigenvector, but it is a generalized eigenvector for lambda.

So, this v 2 is a generalized eigenvector for your lambda.

So, now you have two things here; for lambda you have one; you have a eigenvector v 1

and second what you have is a vector, which is linearly independent to v 1 and this is a

generalized  eigenvector.  Now think  of  that;  now you have  taken up the  generalized

eigenvector, you start looking out for what is your P. So, you start looking into P of

course, there is again I would like to say that; if you look into the general case, there is a

theory behind why you should take v 2 in this particular form, but we are not getting into

that particular theory.

So, we are not getting into Jordan theory at A; I am just trying to explain that this holds

to U; v 2 here that you get here will be linearly independent to v 1. So, we try to look

into what is your P?
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So, your P again is a matrix with your columns as v 1 and v 2; so, this is nonsingular. So,

P is this and this is nonsingular; so definitely if I look into P inverse A P; this is basically

my J and in that case my J would turn out to be a similar matrix to A. So, basically J is a

similar matrix to J and what is your J. In this particular case, we try to compute J; in this

particular case let us go back to looking into your J equal to e, f, g, h. And then what you

have here is you have these 2 equations, your A v 1 happens to be equal to lambda times

v 1, which is basically going to give your g to be equal to 0 and your e to be equal to

lambda.

So, this gives your e as lambda and g as 0; on the other hand what the second equation

that we have here is A v 2 happens to be equal to lambda times v 2 plus v 1. So, that

gives your f to be equal to 1 and your h to be equal to lambda. So, again let us try to

write this down again. So, suppose your J was e, f, g, h; then since your A P happens to

be equal to P J, so you have A v 1 which was your e v 1 plus g v 2.

And now this A v 1 happens to be equal to lambda times v 1 and hence your e is equal to

lambda and your g happens to be equal to 0. On the other hand, you have your A v 2 to

be equal to; this is f v 1 plus h v 2, but your A v 2 here happens to be equal to lambda

times v 2 plus v 1. And now, if you try to compare what you get here is f is equal to 1 and

your h is equal to lambda; your J in this particular case turns out to be equal to the from

lambda 1; 0 lambda.



So, this is your J and this is our similar matrix to A; in the case when A has just one

Eigen value and we very well know that for similar matrices, the Eigen values will be the

same. And the dimension of the Eigen space will  also be the same of course,  Eigen

vectors could be different, but the dimension of Eigen space would be the same. 

So, we have that in this particular case; that means, we are looking into the second case

when we had real we are looking into the case; when your Eigen values are real and

when your Eigen values are equal such that the dimension of the Eigen space is 1; your

matrix is similar to matrix of the form lambda 1, 0 lambda. So, this is basically again

Jordan form.

We now look into the third case; the third case comes out to be why should we assume

lambda 1 and lambda 2 to be real? There could be something else also. So, we look into

the case when lambda 1.
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And lambda 2 are not real definitely; if they are not real they will be complex. So, we

have lambda 1 equal to; so, your lambda 1 is equal to say alpha plus I times better this is

a complex Eigen value. Since lambda 1 is one of the Eigen values, so this is one Eigen

value and we very well know that; being a looking into Eigen values and especially when

we are looking into complex Eigen values, they always occur in pairs. So, the complex

conjugate will also be an Eigen value here.



So, this is also an Eigen value now we have two Eigen values here. So, let us take a

corresponding  eigenvector;  now  think  of  that  our  matrix  is  real,  our  Eigen  values

complex. So, when we are talking of a complex Eigen value we know that the complex

Eigen value will have two components; it  will have a real component and imaginary

component. So, if you are trying to look into the eigenvector here; the eigenvector also

will have a real component and an imaginary component.

So, here let v v 1 plus this be the eigenvector corresponding to lambda. So, now, we have

an eigenvector corresponding to lambda 1. So, let us try to see the equation here A v is

equal to lambda 1 times v; which gives me that A of v 1 plus I; v 2 is lambda 1, but my

lambda 1 happens to be alpha plus I beta and this is my v 1 plus I v 2.

So, that gives me what is your A v 1; your A v 1 turns out to be equal to alpha times v 1

minus beta times v 2 and your A v 2 turns out to be equal to alpha times v 1; sorry you

are looking into A v 2. So, that turns out to be beta times v 1 plus alpha times v 2. So,

trying to take this part; your A v 1 and A v 2 and we know that A v 1 and A v 2 gives you

the column of the similar matrix to A. So, that gives you the column of the similar matrix

to A and hence in this case, so again we let our P equal to v 1; v 2 sorry this is a matrix.

So, P is a vector; P is basically a matrix of columns v 1 and v 2, you know that; in that

case v 1, this P is nonsingular and what we know here is that P inverse A times P will be

equal to J. And what is your J? In this particular case; you just comparing that here; your

J will turn out to be alpha minus beta; beta and alpha we have the Jordan form, we have a

complex.

If you have at least one because once you have one Eigen value as complex, basically the

second one will also be a complex; it will be a complex conjugate. So, if your Eigen

values are complex in case of 2 cross 2 matrix; your Jordan form turns out to be of the

form alpha beta minus beta alpha and this is one of the forms here which we can look

into.

Now, why did we do all these things? We wanted to look into computing A n; so we are

interested in finding the orbit. So, we did all this; so this is basically the proof of the

theorem, we did all this to compute A n.
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So, what is my A? Here if I look into the fact here is that; A can be written as P; J P in

once, where J we can think of to be our Jordan form. So, if it look into a is P I P; inverse,

then your A to the power n; what is that equal to? So, this is P J to the power n and P in

once so; that means, now in order to compute A to the power n, it is enough to compute J

to the power n. And it is easier to compute J to the power n because J is in a very simple

form, if you are writing J in a very simple form. So, it is easier to compute what is your J

to the power n?

So, what we have here is A to the power n; S P J to the power and P inverse and hence

we need to compute A to the power. So, for computing A to the power n, the reason here

is that; if I look into the orbit. So, basically I am looking into the system R square n L;.

so for the system R square L and any v belonging to R square, the orbit of v looking into

the orbit of v. So, the orbit of v is nothing, but v; A v; A square v and so on which turns

out to be nothing, but v P; J P inverse v P, J P inverse v then I have P J square P inverse v

and so on.

So, all we know is now about orbits; so, we need not look into our matrix A at all, once

we know what are the Eigen values; eigenvectors of; we just need to find out what are

Eigen values and eigenvectors or generalized eigenvectors of A. It is enough to compute

our J, compute our P, compute our P inverse and all we can do is; now we can find out

the orbit of v by looking into this structure.



Ideally this reduces the; still does not solve our problem, this now reduces to computing

J to the power n. So, this reduces to computing and now when we try to compute this for

J to the power n; at now similar what happens when J; so, let us look into this the first

page.
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So,  what  happens if  your  J  happens  to  be equal  to  lambda  1,  0,  0;  lambda 2,  what

happens in that case? What is your J to the power n? This is a diagonal matrix.

So, again if I look into this part; your J to the power n would just turn out to be lambda 1

to the power n 0; 0 lambda 2 to the power n. So, computing this is very very easy in case

J; happens to be lambda 1, 0, 0 lambda 2; what happens now if your J is of the form

lambda 1, 0 lambda? What happens in that case? What is your J to the power n? Here try

to seel what is your J square exactly. So, your J to the power n turns out to be lambda to

the power n; n lambda 0 and lambda to the power n, sorry this would be lambda the

power n minus 1 here.

So, J to the power n turns out to be lambda to the power n; n times lambda of the power

n minus 1,, 0 lambda to the power n. Now this is quite interesting fact here what happens

when your J happens to be of the form alpha beta minus beta alpha? What happens in

that case? This is slightly tricky, but we can think of this looks quite similar here. 



So, what you try here is that we note that your lambda 1; I am looking into mod lambda

1 square, what is mod lambda 1 square? That would turn out to be alpha square plus beta

square lambda 1 was here Eigen value; it is a complex number. So, looking into the

magnitude of the complex number; so that was your alpha square plus beta square.

Now, what we do here is we put some trick here; we take our omega to be equal to tan

inverse beta by alpha. And in that case; what we have here is we have our cos omega to

be equal to alpha by mod of lambda 1 and sine of omega to be equal to beta by mod of

lambda 1; definitely know that cos square omega plus sin square omega should be equal

to 1.

So,  what  we get  here is  that  cos  omega is  alpha by mod lambda 1 and sine omega

happens to be beta by mod lambda 1; that cases the value of alpha and beta. So, in that

case; now I am looking into this matrix alpha beta minus beta alpha. This turns out to be;

now I am looking at listen to the form of cos and sine of omega. So, this turns out to be

first of all; I have here is mod of lambda 1 times cos omega sine omega; minus sine

omega and cos omega.

Now, it is very clear what would be our n th power of this? So, this is our matrix J; I am

writing my matrix J in this particular form. It is easier to compute, what is J to the power

n? So, J to the power n lambda 1 to the power n; I can understand. So, this turns out to be

cos n omega sine n omega; minus sign n omega right cos n omega.

So, your J is put up in a very simple form and that makes it easier to compute; what is

your J to the power n? You already know how to compute your P n; P inverse. So, what

happens here is now you can compute your orbit, for any given v; you can compute your

orbit. So, I am today not going to leave you as it is; I am at least going to give you some

homework today.
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So, I want you to solve this particular example. So, find the orbit of 1; so now I am

taking this to be my unit vector v equal to say 1, 0 under the linear transformation. So,

my  linear  transformation  is  L  times  u;  equal  to  A times  u.  So,  this  is  my  linear

transformation and we are looking into the case 1; A can be given in form of 2, 3; minus

3, 2; A is 2, 3; minus 3, 2; does it ring a bell? How do you compute that? 

Now can try something with tan inverse 3 by 2, now I am looking into the second case

here; here A happens to be equal to minus 4, 9 minus 4, 8; how do you compute this

particular kind of a; what is the Eigen value here? So, the dimension of Eigen space turns

out to be equal to 1. So, now you know what is this similar to? All you need to find out is

a generalized Eigen vector and compute this part. 

So, computing orbits of linear system; it is basically looking into the Jordan form and

trying to compute the orbits corresponding to that. I hope this is clear to you, so today;

we stop here, we will look into more things details of the dynamics in the next part.


