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Equivalance of the two definitions of Topological Entropy

Welcome to students, so we have seen two definitions of topological entropy. We have

seen Adler’s definition of topological entropy and we have also seen Bowen’s definition

of topological entropy. Now in the case of a compact metric space both these because

one uses the compactness of the space and one uses the metric property.
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So,  when  we  are  in  the  realm  of  the  compact  metric  space;  both  these  definitions

coincide and today we will be looking into how this two definitions coincide and some

properties that we can speak out of that.

So, we start with our basic assumption; so our basic assumption here is that X d is a

compact  metric  space  and  we  have  X  f;  our  dynamical  system.  We recall  Adler’s

definition  of  topological  entropy  and  Adler’s  definition  of  topological  entropy  is

basically using covers. So, we have U n; which is basically the join of U f inverse U f

minus n u; take this join and this, where U happens to be a finite open cover of X and

you take N; U n to be the minimum cardinality of any finite sub cover of U n, anyway

our cover is finite.



So, you take N; U n to be the minimum cardinality of any finite sub cover of U n and

then you define the growth rate. So, your growth rate H; U n happens to be or you can

think of that to be log of N; U n and then the entropy of u; that is the entropy of a open

cover u, happens to be h u, which is the limit as n tends to infinity 1 by n H; U n. And

then you define the entropy of u; so the topological entropy of u; sorry of the system X f;

is defined as h T X; which is same as h T X f; which happens to be the supremum of h U

such; that U is a finite open cover of X.

So, we define this to be our Adler’s definition of topological entropy. So, you can say

that this is what is Adler’s definition of topological entropy that; h T X happens to be the

supremum of h u, that is the entropy of a open cover where U can be taken up to be any

finite open cover of X. Now we move on to defining Bowen’s definition,  so what is

Bowen’s definition?
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Now, if you very well recall that Bowen’s entropy uses the concept of a metric. So, here

we define S to be basically the set of all x y in X all such pairs you are collecting such

that d of f n x, f n y is or I should say f k x; f k y is greater than epsilon. Whenever x is

not  equal  to  Y and 0  is  less  than  or  equal  to  k  is  less  than  n.  So,  this  S  basically

comprising of all such points x and y happens to be an n epsilon. So, this is an n epsilon

separated set; for f and then we define r n epsilon f; would be basically the maximum of

the cardinality of an n epsilon separated set.



So, your S is a subset of X and is an n epsilon separated set and then we have the growth

rate h epsilon f; defined as limsup as n tends to infinity of log of r n epsilon f divided by

n. And then the topological entropy of X f is defined as h f, which you can also write it as

h; x f just limit as epsilon tends to 0 of h epsilon.

So,  this  is  basically  our  definition  of  Bowen’s  entropy  and  to  see  to  it  both  these

definition seems to be very different because these both of them are having different

approaches. But we will see to it that this is indeed one and the same thing, so for a

compact  metric  space both this definitions coincide.  So, let  us look into the theorem

here; for the compact system X f, we have that is our h T X; Adler’s definition of entropy

is same as h T; X f we can also push that part and writing in this form which is same as h

X f, so this is Bowen’s definition. 

So, these coincide and we now look into the proof of this part. The proof involves a little

bit  design  here  and  we  will  see  that;  that  approach  also  helps  us  in  saying  that

somethings  are  equivalent.  So,  it  gives  us  more  information  than  what  we  would

ordinarily be seeing in a proof. So, fix an epsilon positive and let U be an open cover of

X; now actually we want to relate epsilon with U and since we are working with any U.

So, we are looking into an open cover of X with lebesgue number epsilon.

And we let F be an; n epsilon separating set of minimum cardinality. Now, here I want to

actually draw your attention to something; if we look back to our definition of Adler, we

are  looking  into  an  Bowen’s definition  itself,  we are  looking  into  the  r  n  epsilon  f

happens to be; we are looking into the maximum cardinality here. Whereas, here we are

trying to look into minimum cardinality, so we have an n separate in n epsilon separated

set, but we are trying to look into the minimum cardinality.
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Now, think of  that;  so we are  now defining  here;  let  S  n epsilon f  be  basically  the

cardinality of f. Now, think of that this is basically the minimum cardinality; that means

only these many orbits are there, which are separated and epsilon separated. So, if you

take rest  of the orbits  of X; they will  be close enough to one of the orbits,  at  some

particular point.

So, these are the only points which are n epsilon separated and hence what we try to do

is; we look into; a ball centered at f k x; radius epsilon, take f minus k of that; take its

closure, take the intersection of all these close sets for k going from 0 to n minus 1 and

take the union of all these sets for all X belong to f.

This basically would turn out to be the whole of X because all orbits are epsilon close to

some of the orbit in this n epsilon set. So, this turns out to be X; now for X in f, any X in

f and 0 less than or equal to k; less than n, take this ball B, f k x; epsilon. Now, this is a

ball of radius; I think my lebesgue number should be 2 epsilon here; does not matter. So,

if you try to take this particular ball; so this ball will be contained in one of the open

covers,  one  of  the elements  of  the open cover  because  the open cover  has  lebesgue

number of 2 epsilon.

So, this is covered in contains; so this is contained in an element of the open cover U.

You find that f k x; one of them is indefinitely contained in an element of the open cover

U.  So,  what  is  the  minimum  cardinality  of  U  n  that  would  be  covering  X?  Given



minimum cardinality of U and covering X; so for each of this k you have one here and so

what happens here is your N; U n is less than or equal to S n epsilon f; on the other hand,

let v be an open cover with diameter of v; less than epsilon.

Let E be an n epsilon separated set of maximum cardinality; what happens now? So,

basically your cardinality of E is your r n epsilon f; now every element of v n contains at

most one point of E. So, you looking into v n; so, you looking into the cover generated

by joining v; with f inverse v and so on. Now, if we think of that part and since this is an

n epsilon separated set; every element of E, so every element of v n will contain at most

one point of E and so your r n epsilon f will be less than or equal to n of v n.

What is the resultant here is; that your n of U n is less than or equal to S n epsilon f; this

is less than or equal to r n epsilon f and this is less than or equal to n of v n. 
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And so, we can say that if I take 1 upon n; H of U n; this will be less than or equal to 1

upon n; log of S, n epsilon f will be less than or equal to 1 upon n, log of r n epsilon f and

this will be less than or equal to 1 upon n; H of v n. Now, we can think of taking n

tending to infinity, so as n tends to infinity; what we get here is this is basically giving us

the growth rate now, so at all places we get growth rate.

So, we have this h of U to be less than or equal to; now this is something which is

coming out of the minimum cardinality of an n epsilon set. So, we given an another



name to it; we say that this is h s of epsilon f, this is less than or equal to h epsilon f and

this is less than or equal to h of v.

Now think of that our U has lebesgue number epsilon, our v has diameter epsilon and all

for our separated sets, these are epsilon separated sets. So, as we take epsilon tending to

0; we can think of taking epsilon tending to 0, what we get is we will get a supremum for

h u, we will get a supremum for h v and this definitely is going to give us the Bowen’s

entropy for f.

Let diameter; so, because this is having lebesgue number epsilon. So, we are taking let

diameter of U tend to 0 and so, since diameter of U is intending to 0; that means, that all

of these diameter is also tending to 0 and which basically means that epsilon is tending to

0; so because epsilon happens to be the lebesgue number there. So, as my diameter of U

is increasing tending to 0, so what we have here is that topological entropy of X basically

I should write it as X f less than or equal to the Bowen’s entropy of X f, this is less than

or  equal  to  again  the  topological  entropy  of  X  f  because  this  gives  the  topological

entropy.

And these  basically  give  the  Bowen’s entropy. So,  we can  say  that  this  is  same as

Bowen’s entropy and Adler’s entropy or one and the same thing. Now this gives another

information to us that if we start with an n epsilon set of minimum cardinality; we still

get the topological entropy out of it. Though we started with maximum cardinality and to

start  with  minimum  cardinality  also,  we  get  the  topological  entropy;  we  start  with

maximum cardinality we also get the topological entropy. And hence we can start with

any cardinality of n epsilon set, we get the topological entropy.

So, basically this tells us something more that this we can start off with anything. And

then if we try to look into Bowen’s definition once again. So, if you look into Bowen’s

definition, it definitely depends on the metric that we have considered. Since the metric

that we have considered, gives us what is the epsilon separateness. Now on the real line;

suppose I look into the real line, the real line we have been usually read in metric and in

case of the usually the Euclidean metric, one could think of that fine the distances are

tending to infinity. 

So, the n epsilon sets; the growth rate would turn out to be infinity. But if I am looking

into something like log X, some entropy like log X, some definition of metric using some



kind of contracting functions. Then we would find out that there is an equivalent metric,

but under that equivalent  metric;  the entropy turns out to be something different,  the

growth rate turns out to be something different. So, if you look into Bowen’s entropy; it

is highly dependent on metric spaces, but then there is an advantage here that we are able

to talk of entropy even for non compact spaces.

So, in that sense Bowen’s entropy happens to be more important because we are able to

look into it;  look beyond what to say compactness. Because for Adler’s definition of

topological entropy, we need compactness because we are working with open covers and

we are working with finite sub covers of an open cover. So, that is one advantage which

Bowen’s definition gives over Adler’s definition.  The second advantage that we have

here is that; what happens if you want to look into products.

Now, when we try to look into products; we are looking into products of spaces. We are

looking into products of open covers, now that actually turns out to be very messy and

we may not always have the product to be giving us some nice results on entropy. But

here in case of Bowen’s example because of this equivalence that we have; we will start

with the n epsilon set of minimum cardinality or you start with the maximum cardinality;

what you get is the same part.

So, you can have; you can exactly say that the product of you can exactly define the

entropy of a product system. So, something which failed for Adler’s definition something

which Adler’s definition could not address to is been address by Bowen’s definition. But

then again, we know that all systems are not met risible; you have lot of spaces for which

you can say that ok fine. So, say for example you have some kind of infinite product

spaces, you can talk about compactness there; but then they need not be met risible.

So, Bowen’s definition fails for say a large class of spaces for which Adler’s definition

comes to the rescue. So, if you want to define entropy especially for compact spaces; we

definitely have Adler’s definition, we have Adler’s definition as an edge there, but then

the metric structure also gives us the edge of Bowen’s definition; which is a little bit

easier to see and easier to visualize. It is easier to visualize; how the orbits diverge from

each  other.  So,  in  that  sense  Bowen’s  entropy  definitely  scores  better  over  Adler’s

definition.



So, we try to look into whenever we talk of entropy it is always better and it is always

easier to work with Bowen’s definition. So, look into another theorem here which looks

into the product spaces. Now entropy of products spaces, but when we talk of entropy of

product spaces; as I said that Adler’s definition does not help us here much. So, we need

Bowen’s definition here and again we are looking into our compact spaces. 

So, we look into this theorem; so, we have two compact metric  spaces and we have

basically dynamical systems arising out of this two spaces. Then the topological entropy

now, I am looking into the Bowen’s definition here. And since we know that Adler’s

definition is also equivalent; can say that Adler’s definition; Adler’s this thing follows

from the spot.

But to start with Adler’s and trying to prove this part would have been difficult, but what

we have here is that the entropy of the product system is basically the addition of the two

entropies. We have already seen that; if I have entropy of h and f to the power k and it is

basically k times the entropy of X. So, entropy of f; so what we have here is we have

something more; which you can think of that part that you look into the product spaces;

here we are working with products, not with iterations.

So, with products we are basically adding the entropy here; then you can proof utilizes

some ideas. So, on this space X cross Y; we take up the metric, so using the maximum

metric on X cross Y; one thing more here is that when you are talking of products, we are

looking into finite products. And on any finite product of metric spaces, you can always

define this maximum metric; so we start with the maximum metric here.
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Now, think of this a set E cross f; which is a subset of X cross Y is an n epsilon separated

set. Whenever E and f; these are n epsilon separated subsets of maximum cardinality in

X in Y respectively.

You start with an n epsilon set of maximum cardinality on X; n epsilon separated set of

maximum cardinality on Y take the product. Then definitely it is an n epsilon separated

set in X cross Y. So, what we have here is that; if I look into r n epsilon f cross g, that

will be less than or equal to r n epsilon; f into r n epsilon g. And hence, if I look into;

take the growth rate here and then let epsilon tend to 0, here what we get here; is the

resultant will be that the entropy of f cross g will be less than or equal to the entropy of f

plus entropy of g.

On the other hand, if E and F are n epsilon separated of minimum cardinality; then E

product F is also an n epsilon separated set for f cross g in X cross Y. And so what we

have here is that r of n epsilon f cross g, will be greater than or equal to S of n epsilon f

into S of n epsilon g. Now what happens in this particular case? Here again I can think of

taking the growth rate and taking epsilon tending to 0, what we get here is entropy of f

cross g is greater than or equal to entropy of f plus entropy of g.

And so, basically entropy satisfies this property that you stopped with entropy; you start

with the system. We try to look into the iterate of this, entropy increases; you try to take a

product  of  two systems.  Again  the  entropy increases  because  you are adding up the



entropies  here.  So,  entropy as such has nice properties;  there are  other  properties  of

entropy also,  but presently we are not looking into that.  As far as metric  spaces  are

concerned; we know that the definition of Bowen’s definition goes independent of the

metric because in the compact metric space; all metrics are equivalent.

So, for compact metric spaces we really have a very good collection of entropy, but then

the question here is about chaos.
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So, we again look back into chaos and we have seen various definitions of chaos and the

definition involving entropy is that positive entropy. And in the sense; we are taking as

one of the definitions that positive topological entropy is also definition of chaos. But if

we try to summarize all the other definition of chaos; that we have taken up, so we have

talked about Li Yorke chaos, we have talked about Devaney chaos, we have talked about

Auslander-Yorke chaos and I think we have talked about chaos on the interval maps.

So, we have talked about chaos for interval maps, so you would be really interesting to

see; where does this definition of topological entropy fit in among this part? So, what is

basically the relation among all of these? So, if we try to look into the relation among all

of  this;  Li  Yorke  chaos  says  that,  you  should  have  an  uncountable  scramble  set.

Uncountable scramble set that means that you definitely have orbits diverging off. So,

definitely  that  could  be some say  sort  of  evidence  of  topological  entropy;  look into

Devaney chaos.



Now, what is the relation of Devaney chaos with Li Yorke chaos? So, I think that is

known that; if you have say a system which is transitive plus, it has one periodic orbit

then that implies Li Yorke chaos. So, a transitive system with one periodic orbit is good

enough to imply Li Yorke chaos. So, definitely Devaney chaos for that matter implies Li

Yorke chaos, it is a stronger definition. Now the difference between Devaney chaos and

Auslander Yorke chaos is basically the concept of periodic points. Devaney chaos is just

transitivity sensitivity and dense periodic points; Auslander Yorke chaos simply says it is

transitivity as well as sensitivity.

Now, when it comes up to the concept of minimal systems; we have already seen this

dichotomy that for a minimal system it is either equicontinuous or sensitive. A minimal

system is always transitive, so a minimal system if it is sensitive; it is Auslander Yorke

chaotic but it need not be Devaney chaotic. So as such the two definitions are different

but where does that tend to; in terms of positive topological entropy? 

We already know that we have an example of a minimal system; which has 0 topological

entropy. We also have an example of a system, which is again coming up from some kind

of minimal system and I am not getting into details over here. So, we have an example

which is Auslander Yorke chaotic and which is not having positive topological entropy. 

If you have positive topological entropy; that implies Li Yorke chaos and then it comes

to what can we say about interval maps. So, in general Auslander Yorke chaos does not

imply positive topological entropy. Auslander Yorke chaos and Devaney chaos are again

two different systems, it is also possible to get; say a Devaney chaotic system which is

not having positive topological entropy.

In fact, you think of positive topological entropy; it need not imply transitivity as well.

So, you take; do transitive systems two nice Devaney chaotic systems, union of them.

They both will have positive topological entropy, some result which we will state now.

And if we take the union; the union do it turns out to be having positive topological

entropy; it is not transitive. So, the other way round is not possible; however, in intervals

in the case of intervals we have nice results.
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So, in case of intervals say Li and York had proved that period three implies chaos. So,

that is what Li York chaotic is; the existence of a uncountable scramble set. But we do

have  positive  topological  entropy;  implies  Li  York  chaos.  Then  if  you  look  into

transitivity;  then transitivity if you look into this aspect, we know that on an interval

transitivity implies the existence of a periodic point of period 6; it also implies that there

is a dense set of periodic points, as well as you have periodic points of period 6.

So, if we try to look into what are the non wandering points? The whole set happens to

be non-wandering. Now entropy of a system is enough to calculate entropy on the set of

non wandering points. Here our entire space is non wandering; so, there is a large; what

to  say inclination  for  having positive  topological  entropy. And indeed transitivity  on

intervals does imply positive topological entropy. 

We have also proved that this implies Li York chaos and definitely this is Auslander

Yorke chaotic. If we try to look; if we try to summarize various kinds of examples, what

you get here is that, there is some kind of inter relation between them. Although there are

some things which are not true you have counter examples for that part.

We have already seen an example of a minimal system; which does not imply positive

topological entropy. So, we need not have positive topological entropy coming up from

all  places, but if we try to look into say; again if look into interconnections between

them, there are other definitions of chaos; which we have not defined; there is something



called  distributional  chaos.  There  is  something  called  densely  chaos  and  there  are

implications among them.

So, if we try to look into say various definitions of chaos and try to look into what would

be the interrelation between them? That itself would be a big project, but right now as far

as this lecture is concerned or maybe this course is concerned. It becomes too much to

deal with looking into our definitions and then looking into what are all the interrelations

between them. So, what we apply? What we will do is; we will basically just say that ok

fine these things to hold, there is a nice theory behind all of them and we are not getting

into that aspect.

Now so this is basically all the concepts; what we have now dealt with this almost all the

definitions of what is it  chaos or what I would term as a topological chaos. There is

another concept of Liapunov exponents; which we have not touched up, so this is the

concept  of  Liapunov  exponents.  Now  these  are  basically  defined  for  differentiable

mappings,  so  if  we are  trying  to  look  into  a  dynamical  systems  on  a  differentiable

manifold. So, if we are trying to look into; basically a few morphism on a differentiable

manifold. We can come across this concept of Liapunov exponents and again if you have

positive Liapunov exponents that is an indication of chaos.

So positive Liapunov exponents; so, this is an indication of chaos. The other concept

what we have not studied is ergodicity, now this comes in the realm of measure theoretic

or  measurable  dynamics.  So,  we  are  not  looking  into  continuous  transformations

basically we are looking into measure preserving transformation; on a measurable space

or an probability space. And then we are trying to look into whether the time average and

the space average. So, you trying to look into an orbit; you want to see whether the time

average and the space average turns out to be the same.

The time average and the space average turns out to be same, we say that the system is

ergodic. And this is also term to be chaotic; which we have not looked into. So, there are

a few aspects which we have not looked into, but they also imply chaos. Since in one

course, it is difficult to deal with all different aspects, to work with all different concepts.

We have not touched this aspect, but this aspect is also an indication of chaos and this

also comes up under the realm of dynamical systems. So, today and we will end with this

part and more so, we can take up in the next class; I hope there is no difficulty.


