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Welcome to students. So, today we have been looking into measuring chaos and the

quantity that measures chaos is topological entropy. So, before we go into what is the

motivation  for  studying  topological  entropy  for  understanding  any  mathematical

structure it is very useful if we can attach some kind of numerical value to that structure .

So,  for example,  say we want to study mathematical  structures and we are attaching

numerical values to it.
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So, for example, we want to study say vector spaces and we know that the numerical

value attached to it is the dimension, if you we want to study linear transformations and

we find that the numerical value attached to it right we can think of eigenvalues we want

to study groups and we can attach something called the order of the group. 

So, we have this numerical values right attached to this mathematical structures and then

they give us a lot  of information  about these mathematical  structures and then these

numerator values attached they not only help us in deciding whether the 2 structures are

similar  or the 2 structures  are  isomorphic,  but  they also help us  in  comparing the 2



structures. So, such values they serve as invariants and we would like to study one such

invariant attached with a dynamical system. So, how does the story evolve? So, basically

the story goes back to Shannon.
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So, Shannon studied when he was studying the mathematics  of communications.  So,

basically this was a mathematical theory of communications way back in nineteen forty

eight. So, he wanted to give some kind of a measure to the information that is stored in a

message.  So,  you  want  to  pass  message  from  one  place  to  the  other.  So,  you  are

communicating messages and he wanted to measure.

What is the amount of information stored in this message now it is very easy to retrieve

the complete message if this  amount of information in it  is very small?  So, you can

completely retrieve because there was there is no basic loss of information that you can

get there,  but on the other hand if you have a very complex kind of message which

consists of lot of informations, then it becomes very difficult to retrieve the complete or

it may not be possible to retrieve completely all the information that was conveyed. So,

even when you look into decoding that part it becomes a very complex kind of structure

to encode or decode.  So, he studied he gave this  measure he called this  measure as

entropy. So, this is; what is the birth of entropy. So, he called this measure as entropy

which measures the information content in a message now.



Inspired from this concept of measure of information which actually Shannon had used

for  looking  into  the  mathematical  theory  of  communication  Kalmugarov  defined  an

isomorphism invariant.  So,  inspired  by  this  Kalmugarov  maybe  in  1958  defined  an

isomorphism invariant for measure preserving transformations and the probability space. 

So, he defined an isomorphism invariant called this is measure theoretic entropy or it is

called Kalmugarov entropy or its also called Kalmugarov Sinai entropy we actually. So,

the people important here are Shannon’s entropy, Kalmugarov and what he defined was

this measure theoretic entropy these are the various names by which it is known now we

are not going to study.

Measurable dynamics basically in this particular course, but you can as well study say

some kind of measure preserving transformations on a probability space. So, you have

the set of all Borel sets you have a Borel algebra and then you are looking into measure

preserving  transformations;  that  means,  you are  looking  into  that  the  transformation

preserves the measure right after you apply the transformation. 

So,  when  you  are  looking  into  that  aspect  right  that  is  one  more  way  of  studying

dynamics when again you are looking into only measurable systems or you looking into

measure measurable systems where again your transformations need not be continuous

you are only measuring them how big the set is how small the set is etcetera that also

leads to one very nice theory and there is lot of chaos involved there also, but we are not

going to because it is outside the scope.

Of this particular lecture or this particular course that we get into the measurable content

also and try to study that. So, we will not be studying the measurable part, but this is here

it  needs  to  be  mentioned  because  the  entire  concept  of  topological  entropy  has  its

motivation from this measure theoretic one now there are many features that you have

you see mixing right you see mixing you see transitivity right this all concepts are related

interrelated to what you can see for a measurable system. So, you look into measure

theoretic dynamics. So, measurable dynamics and if you look in to topological dynamics

there are a lot of aspects which are interrelated.

So, one thing aspects have been motivated from the measured theoretic one and then they

have been borrowed into the topological case some of the aspects have been taken up

from the topological case they have been borrowed to the measure theoretic one, but here



definitely this is a very much inspired work from the measure theoretic part now after

Kalmugarov defined this entropy it was almost for of long time and say 65 right. So,

topologically entropy was defined. 

So, topological entropy was defined in 1965 by 3 mathematicians, Adler, Konhean and

McAndrew. So,  as  I  said  that  this  was  inspired  by  Kalmugarov  entropy,  now  this

topological entropy that was defined by Adler and all. So, this was defined for compact

spaces.  So,  he  need compact  house  of  spaces  and  this  was  a  kind  of  definition  for

compact spaces later on R Bowen. So, let me emphasize Adler Konheam, McAndrew

also and then R Bowen he defined in nineteen seventy one defined a metric entropy. So,

this is not some kind of topological entropy this definition it relies on the matrix on the

topology that you define defined a metric entropy and this is now called Bowens entropy

and we shall see that these 2 concepts.

These 2 definitions coincide. So, this is the concept of metric entropy basically both this

entropy  is  whether  you  take  it  in  Adler’s definition  or  whether  you  take  a  Bowens

definition  they  are  called  topological  entropy  the  benefit  is  that  under  certain

circumstances defining one becomes and working that one becomes easier under some

other kind of conditions right defining something some other part and defining Bowens

and  then  using  that  becomes  easier  so,  but  in  general  this  is  defined  for  compact

topological spaces Adler’s entropy is defined for compact topological  spaces Bowens

definition goes for in a metric setting. 

So, of course, when the 2 things are for compact metric spaces the 2 definitions are the

same or they are basically they coincide. So, we will study both these definitions and

they  form  nice  this  entropy  also  forms  a  nice  dynamical  invariant.  So,  if  your  2

dynamical systems are conjugate, then they would have the same entropy and if you try

to look into what is topological entropy. So, topological entropy.
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Topological is a positive constant and of course, a dynamical invariant and why do we

study topological entropy as I already said that this is something called which can be

termed as a measure of chaos. So, dynamical system is called chaotic, if it has positive

topological entropy.

Now what we are going to do today is we are going look into what is the motivation

behind this definition how does this definition come into existence and what could one

try to visualize it in a very simple terms and then we will go back to Adler’s definition

and Bowens definition and we will look into some properties of topological entropy now

where does this motivation come up from. 

So, if you look into that in a various plane words you think of a sequence of positive

reals. So, let x n be a sequence of positive reals now you have this sequence of positive

reals we are interested in what is the exponential growth rate of this sequence. So, the

exponential growth; growth rate of this sequence is defined as you take the limsup of log

of  x n upon n and we take  the limsup as  n tends  to  infinity. So,  this  gives for any

sequence of reals.

This gives the exponential growth rate of the sequence. So, now, it is very simple to see

that if my sequence x n is bounded then this exponential  growth rate will be 0 right

because then log x x n is bounded, but your n is tending to infinity; this exponential

growth rate is 0, but if you have your x n to be some kind of an exponential. So, if you



are you can express your x n in terms of an exponential form. So, for example, if you

have a b greater than one such that your x n is of the form b to the power n then your

exponential growth rate right could be is log of b if your x n is of the form b to the power

n right this exponential.

Growth rate happens to be log b. So, we are now going to use this idea of exponential

growth rate, but then we are working in a dynamical system. So, what kind of sequences

do we deal with? 
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So,  for  a  chaotic  system,  for  a  chaotic  dynamical  system,  one  of  the  underlying

characteristics is the different orbits now you have already seen that for an interval map

right Sakowski’s theorem says that if you have an orbit of period 3 you have orbit of all

periods right. So, you have different orbits and it is basically this multitude of orbits that

you  have  which  gives  us  a  very  rich  structure  for  the  chaotic  system.  So,  we  are

interested in this rich structure of chaotic systems and we want to measure this using this

different orbits. 

So, topological entropy is meant to measure; to be a measure of the complexity of the

system the system is more complex if it  has more distinct orbits. So, the topological

entropy is  meant  to be a measure of the complexity of the system and what does it

measure it measures the exponential growth rate of the number of distinguishable orbits

as time increases we are not formally defining topological entropy. So, particularly this



class let  us assume that the exponential  growth rate of the number of distinguishable

orbits  is  our  entropy right  now we are  interested  in  knowing  what  do  we mean  by

distinguishable orbits and what do I mean by distinguishable orbit as time increases . So,

how do we distinguish the orbits?

Let us look into say the full shift. So, consider the system where your sigma is the full 2

shift. Now what we are interested in we want to see what do we mean by distinguishing.

So, we say that for x y in sigma right this we say that x y can be distinguished the orbit

sorry the orbits of x and y or maybe I am just saying x y to be distinguished x and y are

distinguished if say my x naught; that means, the middle part is not equal to y naught

right they are different in the middle part; that means, we know that this is the metric

space right. So, the distance between x and y the sequence is x and y the distance would

be greater than equal to 1. So, we are looking them as apart. So, x and y can be thought

of us apart 

Now, what do we mean by saying that the orbits can be distinguished. So, we say that for

x y in sigma their orbits can be distinguished if there exist an n in n such that your x n is

not equal to y n now what does that mean it is same as saying that your sigma to the

power n of x is not equal to sigma to the power n of y; that means, now at the nth stage

you can distinguish these 2 orbits if x and y are same right say maybe something greater

than n right we cannot distinguish the orbits because if they are they will be having the

same orbits  up  to  n  steps  right.  So,  we can  distinguish  their  orbits  only  if  they  are

basically within that bracket of time that we want to see within that bracket we are able

to distinguish them.

So, we say that the orbits can be distinguished at time n right if of 2 n we can get some

kind of value k for which sigma k x is not equal to sigma k y, then we can say that we

can distinguish them now we know we have studied the full shift full 2 shifts very well

right. 
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So, we know that we can able since there are 2 to the power n different blocks right. So,

if you want to how many distinct n blocks are there we have we know there are 2 to the

power n different n blocks Right. So, we are able to distinguish only 2 to the power n

different orbits in sigma at time n. So, if we want to look into time n what happens after

time n how many orbits can we distinguish.

We can distinguish only 2 to the power n orbits. So, what is the growth rate of distinct

orbits and sigma? So, the growth rate can be given as now I can write it as a sequence

what happens at the time n; how many orbits can I distinguish right. So, this can be given

as 2 to the power n the sequence 2 to the power n right. So, the growth rate of orbits and

sigma I can write it as a sequence 2 to the power n and what is the exponential growth

rate of this what would be the exponential growth rate here log 2 . So, we can say that for

the full 2 shift right the topological entropy is lag 2 right as we said we roughly say that

growth rate of this orbits is giving as the topological entropy.

So, we can say that the topological entropy of the full 2 shift is log 2. So, let us let us

note it down also. So, the topological entropy let us work with our dynamical system. So,

we say that for any dynamical system if the number of distinguishable orbits at time n is

say a function n of n then the quantity 1 by n times log n of n right can be interpreted as

the time average of the complexity of the system during the time interval . So, now, my

time interval is 0 less than t less than n. So, during this time interval, we can say that the



time average of the complexity is  one upon n log and then the limsup is n tends to

infinity of this quantity. So, this is like 1 by n log of n n.

This is a time independent measure time independent measure of the complexity of the

system this time and we can take this time independent measure of complexity to be our

topological entropy right we will formally define topological entropy in the next lectures,

but presently we take this to be our topological entropy and we have seen that for this for

the full 2 shift right this time independent measure of complexity happens to be log 2

which is our topological entropy. So, let us take x to be any shift space. So, what we do is

let x be any shift space.
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Now, it is easy to see all these things in terms of shift spaces and that is why we are

looking into the example of shift space.

So, let x be a any shift space, then that distinct n blocks in x right we know that we have

defined that to be B n x. So, now, if you want to measure this complexity right we just

need to take this limsup as n tends to infinity of 1 by n log of B n x right this gives the

measure of complexity of the shift space. So, for any shift space if you know how B n x

is working how B n x functions right it is very easy to find out what is the measure of

this complexity very very easy to find out what is the logical entropy. So, what happens

in particular if our x happens to be a sub shift of finite type. So, in particular if x is a sub

shift of finite type.



Then we know that there is a matrix a now how many symbols are there in X A depends

on that. So, let us assume that a is a k cross k matrix. So, there is our k cross k matrix a

such that your x is same as X A then we know what is B n x in that case what is that

equal to we know that from any given vertex I right we need to go to a vertex j in n steps

right from any vertex I to any vertex j if you travel in n steps right that is what is going to

give you the number of all such paths right that is what is going to give you your words

of length n in x right. So, this we can write it as summation. Now I am taking this vertex

vertices I am naming the vertices one to k. So, taking the summation one to k this again

the summation j going from one to k right I have a to the power n right i j.

So, I am looking into the i j th entry of a to the power n and if it sum upon of them then

we know that what we get is all the different blocks all n distinct blocks right of length n

in x i and another think that you can may look into from this very definition is that if I

look into what is the m plus n blocks in X A then we know that this the number of m plus

m blocks in X A will always be less than or equal to the number of m blocks in X A right

multiplied by the number of n blocks in X A because any n block can be extended to an

m plus m block any m block can be extended to an m plus m clock right and if you

multiplied  that  2 right  that  will  always be a some number which is  greater  than the

number total number of m plus m blocks . So, we have this. So, what happens is that the

number of blocks they satisfy this sub additive condition. So, what is the sub additive

condition?

We can simply say that hence, if we take log of B m plus n of X A this is less than or

equal to log of B m X A right plus log of B n X A. So, our blocks m blocks right the sub

shift of finite type that satisfy this particular condition now we will look into a small

lemma here and this lemma is basically from real analysis, I would encourage you to

prove this give a proof of this though we are not going to consider this proof here, but

you can try to prove this.
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So, if I have a n right to be a sub additive sequence; that means, what I have here is a n

plus m is less than or equal to a n plus a m supposing this satisfies the sequence a n

satisfies the sub additive condition, then limit as n tends to infinity a n upon n exists in

the extended real line; that means, I am looking into r union infinity. So, this limit a n by

n. So, if I take the ratio a n by n, this limit exists this limit can also be in finite right, but

it will all definitely exist. 

So, this limit is either a real number or it is infinite now from this lemma right we can

conclude that limit as n tends to infinity right one upon n log of B n x B n X A right will

always exists. So, it could be infinite we are not sure about that, but we are not this limit

would always exist  and since  this  limit  would always exist  we can always define a

topological entropy for the sub shift of finite type now.

What exactly does this topological entropy sub shift of finite type turn out to be for that

we again have to go back to linear algebra, but we may have to go back and study some

more result there.  So, again there is a result is a very famous result which I am just

stating here we are not going to prove that result I am just stating the result here. So, the

result  here is.  So,  the result  here is  Perron Frobenius theorem; the Perron Frobenius

theorem what is this Perron Frobenius theorem. So, let A be an irreducible that A be an

irreducible say k cross k matrix. So, A is an irreducible k cross k matrix, then A has an



Eigenvalue  lambda  which  is  positive  and  is  greater  in  magnitude,  then  all  other

Eigenvalues that a can have also if I look into this eigenvalue lambda.

Which is not only positive, but it is greater than magnitude than all other Eigenvalues

then this Eigenvalue lambda has a corresponding Eigenvector v. So, we can say that also

an Eigenvector v corresponding to the Eigenvalue lambda has all positive all coordinates

positive; that means, v can be written as because a is a k cross k matrix right. So, this

vector v would belong to r k and since this vector v is an r k you can think of all this vs

right to be strictly positive. So, v is v 1, v 2, v k, where each of this v k is strictly positive

now when we think of this part right this is such a lambda right is called a Perron value

let  us say Perron eigenvalue  of  A and such A v is  called  a  Perron vector  right  it  is

basically Eigen vector, which as say that it is a Perron vector of A.

So,  Perron  eigenvalue  and  Perron  vector  right  these  2  are  concepts  defined  for

irreducible matrix a now let us try to look back into let us start to implement this basic

this this theorem into our discussion. So, let us go back to our discussion now.
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So, look into an application. So, if you again go back to our discussion we started with a

sub shift of finite type and now we are looking into and we also looked into that if we

look into sub shift of finite type right all the n blocks permissible n blocks right can be

given in terms of summation i going from one to k summation j going from one to k right

A to the power n i j. So, let a b irreducible, now, let us assume that a is irreducible and let



v be its Perron vector corresponding to the Perron eigenvalue say lambda. So, v be the

Perron vector corresponding to Perron eigenvalue. 

Now since we know that v is a Perron vector, right, we know that each of this v i is

positive. So, let us assume 2 constants m and n such that m is less than or equal to v i is

less than or equal to capital M right for all I going from one to now let us again go back

to  this  once  again  and  try  to  see  how  it  this  fits  in  this  information  helps  us  in

determining this quantity. So, first of all we see that if I take M times summation j going

from 1 to k A to the power n i j this would be less than or equal to summation j going

from 1 to k A to the power n i j of v i.

But if you try to look in to what is this because a has eigenvalue lambda right and b is the

corresponding  eigenvector  then  this  would  basically  turn  out  to  be  nothing,  but

summation j going from one to right this turns out to be nothing, but this is I think this

turns out to be my lambda to the power n right times v i by looking into this factor this

turns out to be lambda to the power n times v i and this is less than or equal to lambda to

the power n times capital m right because we know that v i is less than m . So, we find

that this holds true and this holds true for each of the i. So, hence we can sum of for each

I we have this relation and hence we can take all this I, sorry, i equal to k. So, we can

take all the k equations right this k inequalities here and we can sum them all up. 

So, we try to sum them all up and what is that sum turning out to be equal to; so, we say

can say that m times this summation i going from 1 to k summation j going from one to k

A n i j is less than or equal to now let me not write this term here again right I am simply

saying that this would be let me not write this term here just look into this particular

term. So, this is less than or equal to k times lambda to the power n m and hence what we

can say here is now again let me look into this part what is summation I going from one

to k summation j going from one to A n i j this is nothing, but my permissible blocks of

length n. 

So, if I look into this equation again I can say that the permissible block of length n right

in X A is less than or equal  to k lambda to the power n m by m. So, this  gives an

interesting fact here I am again trying to keep this here because we need to define this

part. So, or maybe I just write it down this part again what we have derived is.



(Refer Slide Time: 46:44)

That the permissible blocks of length n in X A is less than or equal to k lambda n m by m

and then we can say that limit n tends to infinity now we already know that this limit

exists right. So, limit n tends to infinity 1 by n log of B n X a, this will be less than or

equal to limit n tends to infinity 1 by n log of k times lambda to the power n m by n and

we very well know that this would turn out to be nothing, but log of lambda.

So, our one upon n log of B n X A right if we take the limit as n tends to infinity let us

some quantity which is less than or equal to log of lambda, but then we can similarly just

as we saw this case we can similarly see that if I take m times lambda to the power n

right that is going to be less than or equal to lambda to the power n times v i right which

I can say that this would be same as summation j going from one to n A i j v i right and

this is going to be less than or equal to capital n times summation j going from one to k A

i j to the power n right. So, we know that this.

We can look into this in equality and from this inequality what we would get here is that

m I m right k times lambda to the power n is less than or equal to B n; X A just repeating

the process of the previous case. So, what we get is we get this fact here and. So, from

here we can say again we can apply the same part here we can say that log of lambda

right, happens to be equal to less than or equal to limit n tends to infinity 1 by n log of B

n X a. Now what does that give that gives that this limit is equal to log of lambda, right.

So, I can say that limit n tends to infinity 1 by n log of B n X A is same as log lambda



and what was your lambda your lambda happened to be the Perron Eigenvalue of a and.

So, we can say that the topological entropy of X A right the sub shift of finite type is log

of lambda where lambda is  the Eigen is  the Perron eigenvalue  of A,  the topological

entropy. Now for a substitute a finite type right can be thought of as log lambda; let us

now look into some example here. So, we discuss some example here.
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So, let me take x to be equal to X A where a is the matrix simple matrix 1 1 1 1 0, you

think of this simple matrix we know that this is going to give us the golden mean shift

what is the characteristic equation of A.

So, the characteristic equation of a happens to be equal to x square minus x minus one

right and equating it to 0 gives me the eigenvalues here. So, the eigenvalues here I get 2

eigenvalues here right and these Eigenvalues are basically 1 plus or minus root phi by 2.

So, here what we get as the Perron value the Perron eigenvalue that think of it as lambda

to be equal to 1 plus root phi 2 and we all know 1 plus root phi by 2 right, it is a golden

ratio it is because of this reason we call this shift to be the golden mean shift right. So,

this is the golden ratio and hence we call it the golden mean shift right and now we know

that what will be the entropy of the golden mean shift.

So, the topological entropy of golden mean shift log of the golden mean right and this

somehow turns out to be something like 10.48121 something of that is all right and very

well we know that this is positive.  So, we can turn this sub shift of finite type to be



chaotic right this sub shift of finite type is chaotic because of the other definition that we

are taking up that anything with a positive topological entropy happens to be chaotic

there can be another example that we take up. So, let us take a full shift on k symbols, let

x be the full shift on k symbols.

Now, we very well know that if x is a full shift on k symbols, I can always write it as a

sub shift of finite type right the underlying matrix being a one cross one matrix right with

the single entity k now for this matrix right the Perron Eigenvalue will always be k and

hence the topological entropy will be is log of k. So, if you have a full shift on say s

symbols right your topological entropy is log s. 

In the next class, we will go into the formal definition of topological entropy, we will try

to  look into  some properties  of  topological  entropy and we will  try  to  see that  this

concept that we just studied and this was just a discussion that we did right it matches

with the definition I hope there is no difficulty nothing over here.


