
Now  we  are  moving  into  the  stochastic  differential  equations.  Introduce  uncertainties  by
introducing as additive white nice term that is a dXt is equal to b of t,Xt  dt plus dWt where b is a
real valued continuous function from 0,T cross R. The term dWt is called as a white noise and its
integral is Brownian motion Wt. Here the above equation is also known as stochastic differential
equation or SDE the meaning of which would be more clear after the introduction of a stochastic
integral concept.



 

Note that X of t is a stochastic process. The  integral form of the differential equation is the X of
stochastic differential equation is X of t is equal to X of 0 plus integration 0 to t of b of s of X of
s ds plus Wt is a stochastic integral equation. 



In general if b and Sigma are the two suitable functions then the integral equation of the form X
of t is equal to X of 0 plus integration 0 to t function b division with respect to s plus 0 to t Sigma
s of X of s dWs. In the equation two, the first equation – the first integral is different from the
second integral. The second integral is integration with respect to the Brownian motion sample
path Ws. This integral equation is defined by the integration of stochastic process with respect to
the Brownian motion. So the equation two that is nothing but this equation, equation two can be
written as dXt is equal to B of t, Xtdt  plus sigma t of Xt dWt where t is lies between 0 to T
where b and Sigma are two given functions. This the equation 3 is referred to as a stochastic
differential equation. The interpretation of equation 3 tells us that the change that is d of Xt that
is nothing but the X of t plus Delta t minus Xt is caused by a change dT of time with the factor b
of a t, Xt in combination with the change dWt that is nothing but W of t plus delta t minus Wt of
Brownian motion with the factor Sigma of t,Xt. 

The Brownian motion is adopted to the natural filtration. So the unknown is in the Sigma as well
as  b  and  the  increment  of  Brownian  motion  therefore  this  equation  is  called  stochastic
differential equation. 

Now we are going to  discuss there  are  two types  of solutions  for  the stochastic  differential
equation. The first type is called a strong solution. The second type is called weak solution. So
we are  going to  discuss  the  strong solution  first.  Let  us  Sigma sorry  let  Omega FP be  the
probability  space and Wt be a  Brownian motion  defined on it.  The  adopted process  X of  t
satisfying the equation two  that's a stochastic differential equation is said to be a strong solution
uniquely if X of t and the Wt are the two solutions on the same probability space satisfying the
stochastic differential equation two then the probability of X of t is equal to Y of t for all t that
will be 1 then Xt is called a strong solution and it is also a unique solution. That means if you
have another solution Y of t then probability of X of t is equal to Y of t for all t will be 1. In



general a strong solution is a explicit function F such that X of t is a function of t, Ws where s is
less than t. One can write the solution in that explicit function F of t with the Brownian motion.
Then this solution is called the strong solution. 

Now we are going to discuss what is the weak solution of stochastic differential equation. Weak
solution both strong and weak solutions require the existence of the process Xt that solve the
integral  equation version of the SDE. The difference between the two lies in the underlying
probability space. You have each solution consists of a probability space and the process that
satisfies the integral equation. While a strong solution is the process that satisfies the equation
and is defined on a given probability space. When no explicit solution exists for a given SDE
then we can  approximate  it  by the  numerical  solution  replacing  differentials  by differences.
Hence, approximate solution method is similar to the numerical integration. 

So with this we have discussed the strong solution and weak solutions of stochastic differential
equations. 



In this course we are interested to find the strong solution not the weak solution. When the above
results hold good we say that the quadratic variation accumulates accumulated by the Brownian
motion over the interval 0,T is T in mean square and this. Equation 2 can be written as dxt is
equal to b of t,xt dt plus Sigma t of xt dwt where t is lies between 0 to T where b and Sigma are
two given functions. 

Now we  discuss  the  simple  examples  for  the  stochastic  differential  equation.  Consider  this
stochastic differential equation dxt is equal to xt dwt with x of 0 is equal to 1. here b of t,x is
equal to 0 and Sigma for t,x is equal to x. You can verify the Lipscchitz condition for this b is
equal to 0 and Sigma is equal to x hence the strong solution exists. Obtaining the strong solution
will be explained in the further lectures. 



We will see one more example for the stochastic differential equation. Here s of t be the stock
price at time t and the corresponding stochastic differential equation for this example is a d of st
is equal to mu times s of tdt plus Sigma of s of tdwt with s of 0 is known. Here mu is a constant
growth rate of the stock and Sigma is the volatility when you compare it to standard as stochastic
differential equation we get a b of t, x is equal to mu of x and Sigma t,x is same as Sigma x.
Since mu and Sigma are constants the Lipscchitz condition is satisfied. Hence the strong solution
exists and this example also how to find the solution that will be discussed in the further lectures.



Now we are going to discuss the existence and uniqueness solution that is basically a strong
solution. Now we discuss the existence of strong solution. Suppose b is a continuous function.
Similarly Sigma is the continuous function. Satisfying the Lipscchitz condition the absolute of
difference of b of t,x  minus b of t,y plus in  the absolute  Sigma t,x minus Sigma t,y  if  this
summation is less then k times absolute of x minus y where k is a positive constraint and also the
initial  distribution  x  naught  and  wt  are  independent  random variables  then  we  can  say  the
solution is going to exist that will be unique also. So whenever the Lipscchitz conditions satisfied
with the two continuous function b and Sigma for a positive constant k along with x of 0 and w
of t  are independent  random variables.  If  both the conditions  are  satisfied by any stochastic
differential equations then we can conclude it has the unique and it has the existence of strong
solution as well as it will be unique. 



This is similar to the existence and uniqueness solution of a ODE the only difference is it does
not have the term and the Sigma term so it has only the first term which is less than a times
absolute of x minus y that's Lipscchitz condition for ODE. So here also the same thing along
with the continuous function Sigma. If this condition is satisfied along with this condition x0 and
wt are independent random variables then the given SDE as unique solution have the existence
of a strong solution and that will give unique. Note that the existence and uniqueness follow very
closely the standard Picard's method for constructing solutions of ODE. You know the Picard
iteration for a ODE, Ordinary Differential Equation and this iteration is called Ito-Picard iteration
so using Ito-Picard iteration X naught is equal to x0 we get for n is equal to 1, 2, 3. Xn plus 1 of t
will be X naught plus the integration plus the another integration. 

That means with the initial value X naught you can find for n is equal to 1 you can find for n is
equal to 0 you will find the x1 of t first using X naught. Then for n is equal to 1 you will get x of
2 x suffix 2 of t and recursively you can get the xn plus 1 of t for every n as n tends to infinity
you can get the x of t. 

So remark that the iterations are well defined because it satisfies the Lipscchitz conditions as
well as X naught and the wt are independent random variables the solution is going to be exist as
well as it will be unique and these iterations are well defined by the convergence of iteration
scheme we finally obtain x of t is the limit n tends to infinity xn of t. for every n it is a random
variable so this random variable converges to the random variable x of t. So this we are showing
through the Ito-Picard iteration.  This  Ito-Picard iteration  is  similar  to the  Picard iteration  of
ordinary differential equation. 



Now  we  discuss  the  simple  examples  for  the  stochastic  differential  equation.  Consider  the
stochastic differential equation dXt is equal to Xt dWt with X of 0 is equal to 1. here b of t,x is
equal to 0 and Sigma for t,x is equal to X. You can verify the Lipscchitz condition for this b is
equal to 0 and Sigma is equal to x hence the strong solution exists. Obtaining the strong solution
will be explained in the further lectures. 

We will see one more example for the stochastic differential equation. Here S of t be the stock
price at time t and the corresponding stochastic differential equation for this example is d of st is
equal to mu times s of tdt plus Sigma s of tdwt with s of 0 is known. Here mu is a constant
growth rate of the stock and Sigma is the volatility. When you compare it to standard stochastic
differential equation we get a b of t,x is equal to mu of x and Sigma of t, x  is same as Sigma x.
Since mu and Sigma are constants the Lipscchitz condition is satisfied. Hence the strong solution
exists and this example also how to find the solution that will be discussed in the further lectures.

Here is the list of books for the reference. 

In this lecture we have discussed stochastic differential equation. For that we have discussed the
the variations of a real valued function starting with the first order variation. Pth order variation.
Then followed by that we have discussed the variations of Brownian motion starting with the
first order variation, quadratic variation and Pth order variation also. Then we have discussed
that  stochastic  differential  equation  by  adding  white  noise  term in  the  ordinary  differential
equation. Then we have discussed the equivalent as stochastic integral equations and also we
have discussed the strong and weak solutions and finally we have given existence of – existence
as well as a uniqueness of a strong solution. And finally we have discussed Ito-Picard alternation
methods.


