
The next property is self-similarity property. Let me give the definition of self-similarity. Then
we conclude the Wiener process is a one by two self-similar. What is the definition of self-
similar. A stochastic process is said to be H self-similar for some H greater than 0 if each finite
dimensional random vector satisfying the condition for every T greater than 1 any choice of Ti's
for i is equal to 1 to n the joint distribution for n dimension random variable at the time point say
T1, T2, Tn multiplied by T times H for every T and H is the H self-similar for some H greater
than 0. If that distribution is same as X of the time point is multiplied by T without H in the
whole right hand side. So if the joint distribution T times H1 for the random variable  X, T times
T2  for  the  second random variable  and  so  on  if  this  joint  distribution  is  same as  the  joint
distribution of this form then we say it is a H self-similar for some H for every T greater than 0. 

One can verify the Wiener process is the 0.5 self-similar. Here I have not given the proof but you
can multiply for some T for H is 0.5 you can conclude the Wiener process is the 0.5 self-similar. 



The next property that is very important one that is Markov property. You know the definition of
Markov  property.  So  this  is  the  definition  of  a  Markov  property.  If  any  stochastic  process
satisfies the Markov property for arbitrary time point at T naught to Tn which is less than T if
this condition is satisfied then the stochastic process will be Markov process. 

So here from the definition one can conclude W of t plus s minus W of s is independent of past
or alternatively if you know Ws is equal to X naught then no further knowledge of the value W
of tau where tau is less than s has any effect on the knowledge of probability law governing Wt
plus s minus Ws the whole times k the W of t plus s minus Ws which is independent of the whole
past information to s and if you know the information at the s depends only at the time point s
not the whole process. From the definition you can make out because the definition says the
increments are independent. Therefore the W of t plus s minus Ws is independent of the whole
past information from 0 to s. That's what it says. 



Therefore given Wt the future W of t plus h for any H greater than 0 only depends on the future
increment W of t plus H minus Wt and this future is independent of past. Hence this Markov
property  satisfies  since  Markov  property  satisfied  for  arbitrary  time  points  T naught  to  Tn
therefore this stochastic process is called a Markov process. So hence the Brownian motion is a
Markov process. 



The next one is Gaussian process. First let me define what is Gaussian process then I'm going to
relate the Gaussian process with the [Indiscernible] [00:04:57]. A stochastic process is called a
Gaussian process if the distribution of each finite dimensional random vector is a multivariate
Gaussian distributed.  That means if you have a stochastic process and if you take any finite
dimensional random vector from that stochastic process if that finite dimensional random vector
is a multivariate Gaussian distributed random vector then the underlying stochastic process is a
Gaussian process. 

Since for each finite dimensional random vector is a multivariate you can write down the joint
probability density function of n dimensional random vector of Gaussian process. That is nothing
but this is a joint probability density function that is 1/2 power pie power n by 2 you find out the
determinant of the matrix and after that you find out the square root then exponential of this
where mu can be written as the vector and elements are nothing but the expectations and this
notation sum is the covariance matrix covariance between any two random variables X of ti's
with X of tj's where each one is running from 1 to n. Therefore it is the square matrix. And the
elements are nothing but the covariance between any two random variables and all the diagonals
will be the variance of X of ti's where i is running from 1 to n. And it will be a symmetric matrix
because a covariance of X of ti, X of tj is same as covariance of X of tj, X of ti. Therefore this
matrix is a symmetric matrix and the diagonal elements are variants of X of ti's. So one can find
out the covariance of any two random variable using this formula. 

Since  the  Wt  is  a  Markov  process  as  well  as  Gaussian  process  you  can  write  down  the
conditional CDF. The conditional CDF is same as the difference divided is less than or equal to
X minus Xn but since this is normally distributed Wt minus W of Xn is a normally distributed
therefore  this  is  nothing but  minus infinity  to  X minus Xn and this  is  a  probability  density



function  of a  normally  distributed random variable  with mean 0 and the variance  t  minus t
whenever we discuss the Brownian motion we are discussing standard Brownian motion with the
Wt is equal to W0 is equal to 0 and mu is equal to 0 and Sigma square is 1. 

Now we can discuss the Kolmogorov equation for the Brownian motion.  We know that  the
Brownian motion is the Markov process with the continuous time and continuous state space we
can write down what is a transition probability density to the probability transition probability
density P will be probability that Wt lies between X to x plus Delta x, dx given that W is equal to
x naught. We make the following assumptions for any Delta greater than 0 the probability of
absolute Wt minus Ws which is greater than Delta given that Ws is equal to X that is the order of
t minus s. In other words the small changes occurs during small intervals of time that is the
meaning of the above definition. 



Now we can find out the conditional expectation of Wt plus Delta t minus Wt given Wt is equal
to X divided by delta t as limit delta t tends to 0 that is nothing but you can note down as the
denoted as the a of t,x this will be a function of t,x that is denoted as the a of t,x. Similarly you
can make of the conditional expectation of the whole square given that Wt is equal to X that you
can denote it as the b of t,x. In other words the limit of infinitesimal mean of variance of the
increment Wt exists and is equal to b of t of t,x which is known as the diffusion coefficient. So a
Markov process Wt satisfying the above conditions  is known as a diffusion process and the
partial differential equation satisfied by its transition probability density function is known as a
diffusion equation. The partial differential equation satisfied by its transition probability density
function is known as a diffusion equation. So this is the deficient equation this is a PDE or the
transition probability density function P and where a and b are earlier defined this equation is
also known as a forward Kolmogorov equation and also known as a Fokker-Planck equation.
And this equation is possible because of the Wt is a Markov process therefore, and also it's a
Gaussian process therefore we land up the transition probability density function P and satisfying
the PDE and this PDE is called the Fokker-Planck equation. If you solve PDE which is given
here or the standard Brownian motion or the standard means W0 is equal to 0, mu is equal to 0
and Sigma square is 1 in the definition of a Brownian motion then you will get the transition
probability density function P is a 1 divided by square root of 2 times pie t exponential of minus
X square by 2 times t and this is the probability density function of a standard normal distributed
random variable with the mean 0 and the variance t. and the corresponding diffusion equation is
a dou P by dou T is equal to 1 by 2 dou square P by dou X square. 



Now we are going to discuss the joint distribution of a Wiener process. The way we discuss that
Gaussian  process  as  the  Gaussian  process  every  finite  dimensional  random  vector  is  a
multivariate random, multivariate normally distributed random variable therefore you can find
out the joint distribution of W of t1 with W of t2. We know that a W of t1 and W of t2 minus W
of t1 are independent. Here we made an t1 is less than t and also we know that a W of t1 is
normally distributed in the mean 0 variance t1 and this difference is also normally distributed
with the mean 0 and the variance t2 minus t1 and both are independent. Our interest is to find out
the joint distribution of W of t1 with W of t2 but for that first we find out the joint distribution of
a W of t1 with the W of t2 minus W of t1 then use the function of the random variables tool then
you can find out the joint distribution of these two. So first you - so that is a way here I have not
given the derivation.  So finally you will get the joint distribution of joint probability density
function of W of t1 with the W of t2 is in this form where the probability density function is
going to be the normally distributed random variable.  Hence,  the joint distribution will be 1
divided by square root of 1 divided by 2 pie  times the square root  of t1 times t2 minus t1
exponential of this expression. Note that W of t1 and W of t2 are not independent whereas W of
t1 with the W of t2 minus W of t1 are independent random variation. So using that we are finding
the joint distribution of a W of t1 with the W of t2. 

Once you know the joint distribution for any two random variables the same way you can find
out the joint distribution of any n random variables in the Wiener process in the same way. I have
not given the derivation here and we can find out the joint distribution joint probability density
function of the n random variables also. And we need covariance matrix and expectation so the
expectation vector that is mean therefore all the means are 0 whereas the covariance already we
got the covariance of any two random variables of W of t1 with the W of ti's  with W of tj's it will
be a symmetric matrix and the diagrams are nothing but the variance of W. 



We can go for  the  multi-dimensional  Brownian motion.  We can  have  a  W1 is  a  Brownian
motion. W2  is another Brownian motion so you can collect it as a make it as another Wt and
each W is a one-dimensional Brownian motion and then you can go for the stochastic process are
independent therefore you will have a n-dimensional Brownian motion also. 

Here is the reference. So in this lecture we have discussed  the definition of Brownian motion
and also we discussed  the derivation  of  Brownian motion  and we have  discussed important
properties  of Brownian motion starting from stationary increment  increments  or independent
Markov property, Martingale property and also finally we discussed the the multi-dimensional
Brownian motion.




