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To verify the given stochastic process as the Markov, sorry, as the Martingale property, each
random variable  Xt must  be a  Ft measurable.  So we will  see  the definition  of  when the
random variable Xt is going to be the Ft measurable. For that the definition is as follows. 

Let Ft be a σ-field of subsets of Ω. A random variable X t is Ft measurable if every set in σ-
field generated by the random variable X of t is also in Ft. We have a non-empty set, that is a
collection  of  possible  outcomes  and  we  have  created  the  σ-field  on  Ω  and  the  random
variable is said to be a Ft measurable, the random variable Xt is said to be a Ft measurable if
the σ-field, if every set in σ-field generated by the random variable X t is also in F of t. If this
condition is satisfied, then this random variable is going to be call it as a Ft measurable. 

Obviously, F of t is contained in σ(Xt). So here every element, every set in σ-field generated
by the random variable Xt is also in Ft. That means it’s other way around. So if that property
is also satisfied, then this random variable is a Ft measurable. 
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Some remarks on Xt is Ft measurable. The first remark, a random variable is -- a random
variable Xt is Ft measurable if and only if the information in F of t is sufficiently to determine
the value of X of t. The F of t is nothing but the collection of the information up to the time.
So whenever we say the random variable is Ft measurable if and only if the information in FT

is sufficient to determine the value of X of t.

The second remark, when a random variable Xt is not a Ft measurable, then the information
contained in σ-field Ft cannot determine the values of the random variable Xt. Whenever the
random variable is not a Ft measurable, the conclusion is the information contained in the σ-
field F of t cannot determine the values of the random variable whereas Xt is a random -- is a
Ft measurable if and only if it has the sufficient information to determine the value of X of t. 

Third remark, if Xt is Ft measurable and g is a Borel measurable function, then g(Xt) is also Ft

measurable.  We know that  X  is  a  random variable.  Then,  and  g  is  a  Borel  measurable
function. Then g(X) is a random variable. So here we are saying if X t is Ft measurable and g
is a Borel measurable function, then g(Xt) is also a Ft measurable. Obviously, g(Xt) is also a
random variable. Since XT is Xt is Ft measurable, then g(Xt) is also Ft measurable. 

The fourth remark, we are not giving the proof for this remark. The fourth one, when Ft is a
σ-field of all subsets of Ω, that is the power set of Ω and the Ω is finite or countably infinite,
then the random variable defined on Ω is always Ft measurable. Whenever the σ-field Ft is the
power set or the largest σ-field, in that case the random variable defined on Ω is always a F t

measurable. We know that whenever Ft is the largest σ-field, then any real valued function is
going to be a random variable. Here, whenever Ft is a σ-field, which is a largest σ-field or the
power set of Ω and additional  condition,  and Ω is a finite or countably infinite,  then the
random variable is always Ft measurable. 

(Refer Slide Time 05:20) 



Based on Xt is Ft measurable, we discuss adaptability of the stochastic process. The stochastic
process Xt over the t greater than or equal to zero is said to be adapted to the filtration F of t if
the σ-field generated by the random variable Xt, which is contained in F of t for all t greater
than or equal to zero. So this condition is nothing but X t  is Ft measurable. Whenever Xt is Ft

measurable, then the collection of random variable X of t is adapted to the filtration F of t. If
this  condition  is  not  satisfied,  in  that  case  Xt is  not  a  Ft measurable.  If  Xt is  not  a  Ft

measurable, then the collection of random variable, the collection of random variables X of t
is not going to be adapted to the filtration. 

Suppose it is Xt  is Ft measurable, in such cases, all events concerning the sample paths of
adapted process until time t are contained in F of t. It says Ft has the collection -- has the
information up to the time t. Whenever Xt is Ft measurable, then all the events concerning the
sample paths of the adapted process until time t are contained in Ft. It's the same meaning
here. The σ-field generated by the X of t which is contained in F of t whenever the stochastic
process is adapted. 

In a discrete case, we say that stochastic process X suffix n, n can takes a value 0, 1, 2 and so
on is adapted to the filtration F suffix n. So instead of F of t, I am using F suffix n for discrete
type and similarly the random variable is also discrete type. Instead of t I'm using small n. If
the σ-field generated by the random variable Xn which is contained in the σ-field Fn for every
n, it has to satisfy for every n, then only this collection of a stochastic, sorry, this collection of
random variable or this stochastic process is adapted to this filtration Fn. 

For instance, suppose Sn is the price of a stock at the nth day, then the price process Sn, n is
equal to 0, 1 and so on is adapted to the natural filtration Fn, n 0, 1 and so on where Fn is the
history up to the end of nth day. 
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Now we see the definition of a Conditional Expectation of random variable X given σ-field F.
Earlier we have defined the conditional expectation of the random variable X given other
random variable Y takes the value small y. The definition as follows. 

Let (Ω, S, P) be the given probability space. Let X be an integrable random variable and F be
a sub σ-field of S. So here I am defining a probability space with the Ω and this is the σ-field
S and P is the probability measure and the random variable which is integrable and F be the
sub σ-field of S. 

The conditional expectation of X given F, so to distinguish the σ-fields F and S, I am giving
the S is a σ-field and F is the sub σ-field, and we are defining the conditional expectation for
the random variable X given the sub σ-field of S, that is F, that is denoted by X, expectation
of X given F. It's a unique random variable. The way I discuss the conditional expectation is a
random variable. So here the conditional expectation of X given the σ-field, that is also a
random variable. It's a unique random variable satisfying the conditional expectation of X
given σ-field is a measurable with respect to the σ-field F. This is a measurable. 

Also the integration over any set A where A is belonging to F, the expectation of X given F
integration with respect to the probability measure P, that is same as integration with respect
to the probability measure P of the integrand is simply X integration over A. Both are one and
the same. 

Note that the conditional expectation given the σ-field F is a random variable satisfying these
two properties and we are defining the conditional expectation given the sub σ-field of S
where this is the probability space. 
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Notes  on  conditional  expectation  of  X  given  the  σ-field  F.  Note  that  the  conditional
expectation,  expectation of X given F is a random variable  while expectation X is a real
number. Similarly, conditional expectation of X given other random variables also a random
variable, not a constant.

When F is the σ-field generated by Y, then we also write conditional expectation of X given F
for the random variable X, expectation of X given Y. Whenever F is the σ-field generated by
Y, you can replace F by Y. Thus expectation of X given F is the expected value of X given the
information F. That means you can replace the random variable Y by F whenever the F is the
σ-field generated by the random variable Y. That is same as the expectation -- expected value
of  X  given  the  information  F.  Whenever  we  say  the  σ-field,  that  is  nothing  but  the
information. 
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We discussed the conditional expectation of the random variable given σ-field through two
examples.  The first  example  is  as follows. Omega consists  of four elements.  S,  that  is  a
largest σ-field, power set on Ω and the P of {w} is equal to 1/4 where w belonging to Ω. So,
therefore, this is the set function probability measure. We are defining a real valued function.
You can cross-check this is a random variable. 

Let F that's a σ-field, it's a trivial one. It consists of two elements, empty set and the whole
set. Given F is a trivial σ-field, the only random variables which are measurable with respect
to  the trivial  σ-fields  or  constant.  The only random variables  which are measurable  with
respect to the trivial σ-fields are constant. Hence, the expectation of X given the σ-field F
where F is a trivial one, that is same as the expectation of X that is equal to constant. That
constant you can find out by using the probability and the possible values of 0, -1 and 1, you
can find out what is the constant. 

So  here  the  conclusion  is  whenever  the  σ-field  is  a  trivial  one,  then  the  conditional
expectation  over  the  trivial  σ-field,  that  is  a  constant  and  that  constant  is  same  as  the
expectation of X because it is no more random variable.
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The second example is as follows. Here the Ω consists of three elements. S is the largest σ-
field. Probability measure is defined on Ω in each sample itself with the probability 1/3. X is
the random variable. F is not the trivial one here. F is the σ-field which is not a trivial one,
and I am defining another random variable Y and that takes a value 0 or 1, and here I am
claiming that expectation of X given F is same as expectation of X given Y because the Y is
the σ-field generated -- because the F is the σ-field generated by the random variable Y. 

If you -- if you create the σ-field generated by the Y, you may land up empty set, element a,
element  b  and  c  and  the  whole  set  and  that  is  same  as  F.  Therefore,  you  can  replace
expectation of X given F by expectation of X given Y. Here Y is the F measurable. You can
check Y is a random variable also by finding the inverse images.
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The other properties or the first one, the conditional expectation is always greater than or
equal to zero if X is greater than or equal to zero. Then the linear property similar to the
conditional expectation as I discussed earlier. Then this also I have discussed. Instead of a σ-
field, I have discussed with the random variable. If they are independent, then both are same. 
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The last two properties, if X1 is Ft measurable, then the multiplication, the X1 taken out which
is what is known. So since X1 is known because X1 is a F measurable, so X1 will be coming
outside, X1 times the conditional expectation. 

If G is a sub σ-field, then this expectation, conditional expectation is same as the conditional
expectation and this is called the tower property. I am not going to give the proof of this. 
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