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The Rule 2, it is a Linearity property. The linear property says the expectation of alpha times
X plus beta times Z given that Y takes a value some small y, that is same as alpha times the
conditional expectation of X plus beta times the conditional expectation of Z where alpha and
beta are constants. 

It's  similar  to  the  linear  property  of  expectation.  The  same  thing  holds  good  for  the
conditional expectation also. Therefore, no need to give the proof. 
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The third one, that is the Expectation Law. Expectation of conditional expectation is same as
expectation. It says the expectation of a random variable X can be computed in two steps:
first using the information on another random variable Y and next taking the expectation of
the result. 

You  can  visualize  in  the  other  way  around.  Expectation  of  X  can  be  computed  as  a
expectation of conditional expectation of X given Y. That means you can take any random
variable  Y  as  long  as  the  conditional  expectation  possible,  find  out  that  conditional
expectation, then find -- since the conditional expectation is a random variable, so find out
the expectation of that random variable. That is same as the expectation of X. 

The proof is given with the assumption both the random variables are continuous with the
joint probability density function f.  So I'm starting with the left  hand side expectation of
expectation X given Y that is same as you know how to compute the expectation. Here the
provided  condition  is  expectation  exists.  Similarly,  in  the  definition  of  conditional
expectation also you have to make the assumption the expectation is exist. Then only we are
finding the conditional expectation. 

So this expectation exists. Therefore, minus infinity to infinity conditional expectation, this is
a random variable and you are finding the expectation of that. Therefore, you multiply the
probability density function for the random variable Y because this expectation of X given Y
is a function of y. Therefore, you should multiply with the probability density function of y,
integrate with respect to y between the limits minus infinity to infinity and by definition the
conditional expectation is nothing but x times the conditional probability density function
integration with respect to x between the limits minus infinity to infinity. So you substitute
that. 

Now you can come to the conclusion, the integration of minus infinity to infinity, the joint
probability density function of x and y is nothing but the marginal distribution. So here the



integration  is  with respect  to  y. Therefore,  you get  the marginal  distribution  or  marginal
probability  density  function  of  x.  So here  it  is  a  conditional  probability  density  function
multiplied by the probability density function. 

Therefore, this product will give the joint probability density function of x and y. Any joint --
any two random variables joint probability density function can be written as the product of
marginal distribution into the conditional distribution. So using that I am getting the joint
probability density function. 

Now  this  integration  is  f(x).  Therefore,  the  one  integration  and  this  much  will  give  a
marginal. Therefore, it is a minus infinity to infinity x times that is going to be the marginal
probability density function of x. Therefore, you will get expectation of X. 

So the right hand side, right hand side is going to be the expectation of X. So you can find out
the  expectation  of  X by computing  the  conditional  expectation  with  some other  random
variable, then find the expectation. So this rule has a lot of importance. 
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The  next  one  is  Independence  Law. If  two  random  variables  are  independent,  then  the
conditional expectation and the original expectation are both are same. 

The  proof  is  assuming  both  the  random  variables  are  continuous,  so  the  conditional
expectation,  this  is  by  definition  and  you  know  that  both  the  random  variables  are
independent. Then the conditional distribution is same as the marginal. Therefore, you can
replace  this  way the marginal  distribution.  So x times the f  of x,  that  is  nothing but the
expectation of X. 



That means if two random variables are independent, then the conditional expectation is not a
random variable. It is a constant because the right hand side expectation of X is a constant.
Therefore, this is also a constant.
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The next rule is Stability. Suppose you have the function g and g(Y) is also going to be a
random variable, that means g is a Borel measurable function, so the expectation of X times
g(Y) given Y that is same as the g(Y) will be out, g(Y) times the conditional expectation of X
given Y.

That means the later we are going to use the property called known is out. That means that
the expectation of X times g(Y) given Y takes a value something, some small y, that means
this is going to be treated as a constant. So g(Y) has to be treated as a constant. Therefore, the
constant will be come out. Therefore, g(Y) times the expectation of X given Y. The same
thing I have written in the proof with both the random variables are continuous.
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Now we introduce sigma-fields on omega through an example because this is very important
concept for the Martingale. Example start with tossing a coin infinitely many times. Tossing a
unbiased coin infinitely many times. Let Omega be the collection of possible outcomes HH
and so on, HT and so on, TT and so on, TH and so on. Let F0 be the trivial  sigma-field
consists  of  two  elements  empty  set  and  the  whole  set.  F1 is  the  smallest  sigma-field
containing in Ω1. F2 is the smallest sigma-field containing in Ω2  containing the information
learned by observing the first two consecutive tosses. 

If you observe, you will find the Ω1 contained in, sorry, F1 contained in F2, F2 is contained in
F3 and so on. Since we are tossing a unbiased coin infinitely many times, if you find out the
limit of Fn, that is going to exist and that is going to be F infinity in notation and that in
notation we can make out it’s F. 

So this consists of the information learned by infinitely many tosses observation. That is the
sigma-field F. So this is the way one can create the sigma-fields on Omega. So Omega is
consisting  of  all  the  possible  outcomes  in  infinitely  many  tosses  observation  over  the
infinitely  many tosses  whereas  the  Ω1 consists  of  only  two elements.  Therefore,  we are
creating a first sigma-field on Ω1 and after you create four elements, the possible outcomes,
after framing the possible outcomes into the four elements, you get the Ω2. So using Ω2 we
are creating a larger sigma-field F2. 

So like that you can create Ω3F3, Ω4F4 and so on and all those Fi’s satisfies this property and
the limit exists as n tends to infinity. This sigma-field is going to be denoted by the letter F.
So this is the way one can create the sigma-fields on Omega. 
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Now we present the sigma-field generated by the -- by a collection of subsets of Omega. Let
U be a collection of subsets of Omega. Then the smallest sigma-field containing U is called
the sigma-field generated by the collection U of subsets of Omega. This is denoted by σ(U). 

Consider an example where Omega is equal to {a, b, c}. Let U is {a}. Then σ(U) is a empty
set, element a, element {b, c} and the whole set is the sigma-field generated by the collection
of sets {a}. 
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Consider an example where Omega is equal to {a, b, c, d}. Define the random variable X,
which takes a value 0.5 for w is equal to a, b. It takes a value 1.5 when w takes a value c, d.



Let A1 be the set which takes the value -- which is the collection of possible outcomes in
which the X(w) takes a value 0.5. Therefore it is {a, b}. 

Similarly, let A2 to be the set for the collection of w belonging to Omega in which X(w) is
equal to 1.5. Hence it is {c, d} be the subsets of Omega. 

Let U is equal to {A1, A2}. Hence, the σ-field generated by the random variable X that is
same as σ(U) that is empty set, {a, b} is one element and {c, d} and the fourth element is the
whole set. 
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Assume that for each t in [0, T] where T is a positive real number, then for each t between the
interval 0 to T, you are creating a sigma-field F of t and those sigma-fields F of t for possible
values of t between the interval 0 to T, it satisfies the condition Fs is contained in Ft. If this
condition is satisfied over the interval 0 to T by s and t where s is less than or equal to t, then
this collection of -- this collection of random variables, sorry, this collection of sigma-fields is
called the filtration. 
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The definition of filtration in real time is as follows. In discrete time, the filtration is an
increasing sequence F0 contained in F1 contained in F2 and so on of sigma-fields, one per time
instant. The sigma-field Fn may be thought of as events of which the occurrence is determined
at or before time n, the “known events” at time n.

The natural  filtration of a stochastic  process Xn is defined by Fn is  the collection of n+1
dimensional  random variables  belonging to  B where  B is  contained in  Rn+1.  This  is  also
written as Fn is a sigma-field generated by the n+1 random variables or you can think of a
random vector with n+1 dimension. So the Fn is a sigma-field created by the random vector
X0 to Xn or the random variables X0 and X1 and so on till  Xn. So this is the filtration in
discrete time. 
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Let us generate a filtration for this example for discrete situation. So take the same example,
tossing a unbiased coin infinitely many times and the Ω1 is having two elements. This is the
sigma-field  on  Ω1 and  the  F2 is  the  sigma-field  on  Ω2  and  also  satisfied  sigma --  F1 is
contained in F2 which is contained in F3. Therefore, this collection of -- the collection of
random -- the collection of sigma-fields is  called  the filtration.  So this  is  an example of
creating sigma-field in real time.


