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This is a Stochastic Process, Module 6: Martingales, Lecture 1: Conditional Expectation and
Filtration.

In the last  five  models,  we have discussed stochastic  processes,  few properties  and then
discrete-time Markov chains and continuous-time Markov chains. 

In this module, we will discuss an important property of stochastic processes, Martingale.
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In this lecture,  Conditional Expectation,  few important properties,  sigma-fields on omega,
filtration,  conditional  expectation  of  a  random variable  given  sigma-field,  few important
properties along with simple examples will be discussed. 

(Refer Slide Time 01:27)

A  statistic  process  is  often  characterized  by  the  dependence  relationship  between  the
members of the family. A process with the particular type of dependence through conditional
mean known as Martingale property. This property has many applications in probability. 

An example, a player plays against an infinitely rich adversary. He stands to gain rupees 1
with the probability P and lose rupees 1 that’s equivalent of gain rupees minus 1 with the
probability q that is 1 minus p. Let Xn be the player’s cumulative gain in the first n games.



The question is what will be his fortune, on the average, on the next game given that his
current fortune?

We need the knowledge of Martingale to solve this problem. Martingale concept involves the
conditional expectation of a random variable given sigma-field. Hence, we will introduce the
conditional expectation. 
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Here  is  the  definition  of  conditional  expectation.  Let  X and Y be  two random variables
defined on the probability space (Omega, F, P). The conditional expectation of the random
variable X given the random variable Y takes the value small y can be expressed in the form
expectation of X given Y is equal to small y. 

Both the random variables defined on the same probability space. Omega is the collection of
possible outcomes. F is the sigma-field and P is the probability measure. This triplet  is a
probability space. So both the random variables defined on the same probability space and we
are  defining  the  conditional  expectation  of  the  random variable  given  the  other  random
variable takes the value small y. 

That can be defined in the form if both the random variables are continuous, then we can
make  out  as  an  integration  minus  infinity  to  infinity  x  times  the  conditional  probability
density function of the random variable x given that other random variable takes a value
small y, integration with respect to x provided the probability density function of the random
variable Y at the point y has to be greater than 0. 

You know that the probability density function is always greater than or equal to 0 in the
whole range of y, but here we are discussing the conditional expectation of X given the other
random variable  takes the value small  y. So at  that point small  y, the probability density
value, density function fY(y) has to be strictly greater than 0. If that is the case and we assume



that here both the random variables are continuous, therefore, we are having a probability
density  function  and  integration  is  with  respect  to  x,  x  multiplied  by  the  conditional
probability density function of x given y. 

Suppose both the random variables are continuous, then this conditional expectation of X
given Y can be expressed in the form summation xi's probability of X takes the value small xi

a given that Y takes the value small y. So this is the conditional probability mass function of
the random variable  X given the other  random variable  takes  the value y. Here also the
provided condition is provided the marginal probability, the mass function for the random
variable Y at the point small y has to be strictly greater than zero. In that case, you can find
out the conditional expectation of X given the other random variables small y.
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Now we present an example. So here the omega consists of four elements a, b, c, d and the
sigma-field  is  the power set.  The omega is  finite,  so you can  create  the  power set.  The
number of elements is going to be 2 power n where n is the number of elements in the sigma,
omega. So here the f is going to be the sigma-field, which is the power set. So that is the
largest sigma-field also and we are defining the probability for each sample that is 1/4 where
w is belonging to omega. 

Now I am defining two random variables  X and Y satisfying the condition of a random
variable that is X inverse of minus infinity to X. That semi closed interval inverse image is
belonging to F for all X belonging to omega. Then that is going to be a random variable. So
here you can cross check whether this real valued function X is a random variable or not. It
satisfies the random variable condition.  So X is a random variable.  Similarly, Y is also a
random variable. 

Now I am going to calculate the conditional expectation of X given Y takes a value small -- Y
takes a value minus 1. So that is nothing but the summation, summation of xi P of X equal to



xi given Y takes a value minus 1. That means I have to find out the possible values of xi’s.
Then  find  out  the  conditional  probability  mass  function  for  those  xi's.  Multiply  it.  Then
summate, summate over i. That is going to be the conditional expectation of X given Y takes
the value minus 1. So the X can take the value 0, -1 or 1. So I can compute the way -1 times
probability of X takes the value -1, Y takes the value -1. The next X can take the value 1 into
probability of X takes the value 1 given Y takes value -1, 0 into the conditional probability
you don't want to write. Therefore, we have only two terms. 
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Therefore, the conditional expectation of X given Y takes a value -1, that is going to be minus
times this conditional probability you know how to compute, find out the joint probability
mass function of X takes the value -1, Y takes the value -1 divided by probability of Y takes
the value -1 plus the second term that is a joint probability mass function of X takes the value
1 and Y takes the value -1. You know the probability of X takes the value -1 and Y takes the
value -1, the only possibility is the sample is a and similarly this sample is not possible.
That's an empty set. 

Therefore, the probability of sample a, that is 1/4, the probability of Y takes the value -1 is
possible with a and b. Therefore, it is 1/4 plus 1/4. That is 1/2. Empty set probability is 0 and
the denominator probability is 1/4 plus 1/4, that is 1/2. Therefore, simplification gives the
expectation is equal to -1/2. 

Similarly, you can find out the conditional expectation of X given Y takes a value 1 the same
way.
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Now I can write it in the compact form. Expectation of X given Y takes a value small y for all
the possibility, that is going to be -1/2 if w is equal to a and b. This is going to be 1/2 if w is
going to be c or d. That means based on the w, the value changes; w is nothing but the
sample; w is belonging to Omega. 

So  the  observations  are  the  conditional  expectation  is  a  function  of  Y. The  conditional
expectation  of  X  given  Y takes  a  value  small  y  is  a  function  of  Y. Not  only  that,  the
conditional expectation is a random variable because for all possible values of w, you will get
different values.  Therefore,  this is the random variable  whereas expectation is a constant.
Conditional expectation is a random variable. 

Few important rules on conditional expectation will be used to verify the given stochastic
process has a martingale property. So we list the rules. With a few assumptions, we have
presented the proof, but these rules can also be proved without these assumptions.
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The Rule 1 says if X is greater than or equal to 0, then the conditional expectation of X given
whatever be the random variable Y, that is always going to be greater than or equal to 0 if X
is greater than or equal to 0 with the probability 1. Whenever X is a non-negative, then the
conditional expectation is also going to be non-negative. That's a positivity property. 

So the proof is given here. Assuming X and Y are the continuous random variables with the
joint probability density function f, I am going to give the proof. Similarly, one can give the
proof  assuming  both  the  random  variables  are  discrete  random  variables  with  the  joint
probability mass function also. 

Since X is greater or equal to 0, the probability of X is less than 0 is equal to 0 and the
probability density function of x is going to be 0 for all x less than 0. Hence, the conditional
distribution of x given y, that is also going to be 0 for all x less than 0 whatever be the y
belonging to the real. 

So when let y belonging to real, the conditional expectation is going to be minus infinity to
infinity x times the conditional probability density function and this conditional probability
density function is going to be 0 for x is less than 0. Therefore, the integration exists only
from 0 to infinity because minus infinity to 0, the density function is 0.

Therefore,  the conditional expectation is going to be 0 to infinity x times the conditional
probability  density function and you know that the probability density function is always
greater than or equal to 0 in the whole range and x is here we are integrating from 0 to
infinity. Therefore, this quantity is always going to be greater than or equal to 0. 

So this concludes if x is greater than or equal to 0, the conditional expectation of X given Y,
that is also greater than or equal to 0.


