
So one more thing that is a conditional expectation. So since I said X given Y is random variable
I can go for finding out what is the expectation of X given Y. So this is called the conditional
expectation, that means the X given Y is the still it is a random variable but it is a conditional
distribution.  Therefore  finding  out  the  expectation  for  that  that  is  called  the  conditional
expectation. 

Suppose I treat both the random variables are continuous case then the conditional expectation is
nothing but minus infinity to infinity X times f(X)  given Y of X, X given Y integration with
respect to X. That means by treating X and y are continuous random variable I can able to define
the conditional expectation is this provided this expectation exist. That means in absolute sense if
this integration converges then without absolute whatever the value you are going to get that is
going to be the conditional expectation of the random variable. And if you note that since the Y
also can take any value therefore this is a function of Y; not only this is a function of Y the
conditional expectation is a random variable also. That means X given Y is a random variable.
The expectation of X given Y is a function of Y and Y is a random variable it takes a different
value small y therefore expectation of X given Y is also a random variable. That means you can
able to find out what is the expectation of expectation X given Y. 

if you compute that it is going to be expectation of X this is a very important property in which
you are relating two different random variable with the conditional sense and if you are trying to
find out the expectation of that that is going to be the original expectation.  That means the usage
of this concept instead of finding out the expectation of one time random variable if it is easy to
find out the conditional expectation then you find out the expectation of conditional expectation
that is same as the original expectation. Suppose you have two random variables or independent
random variables then that there is no dependency over the random variable X and y therefore
the expectation of X given Y that is same as the expectation of X. 



So  this  can  be  validated  here  also  because  this  expectation  of  X  given  Y is  going  to  be
expectation of X. X and the expectation of X is a constant and the expectation of our constant is
a constant that  is same as the constant.  So that  can be cross-checked.  So here I have given
expectation of X given Y in the integration form. If both the random variables are continuous
then accordingly you have to use initially the joint probability mass function then conditional
probability mass function to get that conditional expectation. And this conditional expectation is
a  very much important  to  give one important  property called  the martingale  property in  the
stochastic process in which you are going to discuss not only two random variables, you are
going  to  discuss  you  have  a  n  random variables  and  you  can  try  to  find  out  what  is  the
conditional expectation of one random variable given that the other random variable takes some
value already. 

So there we are going to find out what is the conditional expectation of n dimensional random
variable with the given that remaining n minus 1 random variable takes already some value. So
here  I  have  given  only  with  the  two  random  variables  how  to  compute  the  conditional
expectation but as such a you are going to find out the conditional expectation of n random
variables with the n minus 1 random variables already taken some value. So before I go to the
another concept let me just give a few examples in which I have already given if both the random
variables are of a discrete type I have given an example of a joint probability mass function has 1
divided by 2 power X plus y and the X takes a value 1, 2 and so on and Y takes the value 1, 2 so
this is a joint probability mass function example. And suppose you have a random variables are
of  the  continuous  type  then  I  can  give  one  simple  example  of  the  joint  probability  density
function of a two dimensional continuous type random variable has a joint probability density
function lambda times mu E power minus lambda X minus mu Y where X can take the value
greater than zero Y can take the value greater than zero and lambda is strictly greater than zero as
well as mu greater than zero. So this is going to be the joint probability density function of two
dimensional continuous type random variable. You can cross-check this is going to be joined
because it is going to be always take  great not equal to zero values for all X and y and if you
make a double integration over minus infinity to infinity over X and y then that is going to be Y.
And you can verify the other one if you find out the marginal distribution of this random variable
you may land up the marginal distribution of this random variable is going to be lambda times E
power minus lambda X and similarly if you find out the marginal distribution of the same one
you will get mu times minus mu Y and if you cross check the product is going to be the joint
probability  density  function  then  you  can  conclude  this  both  the  variables  are  independent
random variable. 

Similarly you can find out what is the marginal distribution of the random variable X. Similarly
marginal distribution of Y. If you cross check the similar independent so property of independent
then that is satisfied. Therefore, you can conclude here the random variables X and y both are
discrete  as  well  as  both  are  independent  random variable  also.   So  the  advantage  with  the
independent  random variable  always  you  can  find  out  from the  joint  you  can  find  out  the
marginals but if you have a marginal you cannot find out the joint unless otherwise they are the
independent random variable. Therefore, the independent random variable makes easier to find
out the joint distribution with the provided marginal distribution. 



And  here  is  the  one  simple  example  of  –  here  is  a  simple  example  of  bivariate  normal
distribution in which the both are under variables X and y are normally distributed therefore the
together joint distribution is going to be of the form. Let me write the joint probability density
function of two dimensional normal distribution random variable as 1 divided by 2 pi sigma 1
sigma 2 multiplied by square root of 1 minus rho square into e power minus half times of 1
minus rho square multiplied by X minus mu 1 by sigma 1 whole square minus 2 times  Rho
minus 2 times Rho into X minus mu 1 by Sigma 1 that is multiplied by y minus mu 2 by Sigma 2
plus y minus mu2 by sigma2 whole square. So here if you find out the marginal distribution of
the random variable X and the marginal distribution of Y you can conclude X is going to be
normally distributed with the mean mu 1 and the variance Sigma 1 square and similarly you can
come to the conclusion y is also normally distributed with the mean mu 2 and the variance Sigma
2 square. That means if you make the plot for the joint probability density function that will be of
this shape one is the X and one is the y and this is going to be the joint probability density
function for fixed values of mu 1 and mu 2 and Sigma 1 and the Sigma 2 and this is going to be
the joint probability density function and here Rho is nothing but the correlation coefficient. That
means what is the way the random variable X and y are correlated that comes into the picture
when you are giving a joint probability density function of this random variable and they are not
independent random variable unless otherwise the Rho is going to be 0. So if the Rho is going to
be 0 then it gets simplified and you can able to verify the joint probability density function will
be the product of probability density function and each one is going to be a probability density
function of a normal distribution with the mean mu 1 and the variance Sigma 1 square and mu 2
and the Sigma 2 square. 



So this bivariate normal distribution is very important one, when you discuss the multinomial
normal distribution.  So only we can able to give the joint probability density function of the
bivariate so the multivariate you can able to visualize how the joint probability density function
will look like and what is the way the other factors will come into the picture. 

So other than correlation and the coefficient  – other than covariance correlation and correlation
coefficient we need the other called covariance matrix also because in the stochastic process we
are going to consider n dimensional random variable as well the sequence of random variables.
So you should know how to define the covariance matrix of n dimensional random variable. That
means if suppose you have a n random variables X1 to Xn then you can define the covariance
matrix as you just make a row wise X1 to Xn and the column also you make X1 to Xn. Now we
can fill up this is going to be a n cross n matrix in which each entity is going to be covariance of
so that means the matrix entity of i,  j   is nothing but what is the covariance of that random
variable Xi with the Xj. You know that the way I have given the definition covariance of Xi and
Xj if I and J are same then that is nothing but e of X square minus e of X whole square therefore
that is nothing but the variance of that random variable. Therefore, this is going to be variance of
X1 and this is going to be the variance of X2. Therefore, all the diagonal elements are going to
be variance of Xi's whereas other than the diagonal elements we can fill it up this is going to be a
covariance of X1 with X2 and the last like that the last element will be covariance of X1 with the
Xn. 

Similarly second row first column will be covariance of X2 with X1. And you can use the other
property the covariance of XI,  XJ same as covariance of XJ with the XI also because you are
trying  to  find  out  expectation  of  X  into  y  minus  expectation  of  X  into  expectation  of  Y.
Therefore,  both the covariance  of X2 with X1 is  same as X1 with X2 so it  is  going to  be



whatever  the value you are going to  get  it  is  going to  be the symmetric  matrix  and all  the
diagonal elements are going to be the variance. 

So the way I  have given the two dimensional  normal  distribution that  is  a  bivariate  normal
suppose you have a n dimensional  random vector  in which each random variable  is  a norm
distribution then you need what is the covariance matrix for that then only you can find out what
is  it  –  then  only  you  can  able  to  write  what  is  a  joint  probability  density  function  of  n
dimensional random variable.


