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Yeah, this is a Module 5, Continuous-time Markov Chain. In the first lecture, we have 
discussed the definition of a continuous-time Markov chain. Then we have explained how we
can derive the Chapman-Kolmogorov equation, then we have defined infinitesimal generator 
matrix. Then I have given the Kolmogorov differential equations in the first lecture. 

In the lecture 2, I am planning to discuss the limiting distribution, stationary distribution, and
steady-state distribution. Followed by that I am planning to give a description about the birth-
death processes, and also some simple examples for the limiting distribution, stationary, 
steady-state distributions and birth death processes. 



Before I go to the limiting distribution, let me give the example for the continuous-time 
Markov chain to get the time dependent solution. This example is the very simplest example 
that is the two steps continuous-time Markov chain. The default one is the time 
homogeneous. The state’s phase are 1 and 0. 1 you can consider as upstate or operational 
state and 0 is a downstate non-operation state. So this can be visualized for any model in 
which the whole dynamics can be described with the two-state and the Markov property is 
satisfied. The system going from the state 1 to 0 or the time spending in the state 1 before 
moving into the state 0 that is exponentially distributed with the parameter, λ.

Once it is failed that means the system is in the downstate, the time spent in the repair time 
that is exponentially distributed with the parameter, µ. So once the repair is over, the system 
is operation state, therefore it is in the upstate. So 0 is related to the downstate and 1 is related
to the upstate and µ is nothing but the mean. 1/µ is the mean time for the repair and 1/λ is the 
mean time of failure and the failure time is exponentially distributed with the parameter λ and
that repair time is exponentially distributed with the parameter µ.

This is a state-transition diagram for the two-state CTMC. The corresponding Q matrix, the 
infinitesimal generator matrix that it consists of it's a 2x2 matrix. The system going from the
state is 0 to 1 that rate is µ. The system is going from the state 1 to 0 that rate is λ and the 
diagonal values are minus of summation of other values, that row sum. So 0 to 0 is - µ and 1 
to 1 is -λ. Therefore, the rates are in the other than diagonal elements and the diagonal 
elements are minus of sum of the row values, other than that a diagonal element. 

So this is nothing but in a very small interval of time, Δt , the system is moving from the state
0 to 1 that probability, the probability of system moving from the state 0 to 1 that is nothing 
but the downstate to the upstate in a very small interval of time, Δt. Why you are finding 
the probability of Δt since the model is at time homogeneous; only the interval is matter not 
the actual time, or you can visualize this as some time t to t+Δt also. 



So this is the interval of small, negligible interval Δt, the system is moving from the state 0 to
1 that probability is nothing but the rate, µ is the rate. The rate is nothing but the repair rate. 
So the mean rate µΔt+o(Δt). It’s a small o. Order of Δt d means as Δt0, the o(Δt) will be 0. 

Similarly you can visualize the probability of system moving from the state 1 to 0 in the 
interval Δt, the small interval Δt that is same as the failure rate, λΔt that's a small interval of 
time plus o(Δt). So this o(Δt) also tends to 0 as Δt0.

So using this I can make the forward Kolmogorov equation. I can go for writing a forward 
Kolmogorov equation or backward Kolmogorov equation but forward Kolmogorov equation 
is easy to make out. So if the system is in the state i at time 0, what is the net rate the system 
will be the state 1 at the time t? That net rate is nothing but what are all the inflow that 
probability rate minus what are all the outflows. That's the way you can visualize that right 
inside. So all the positive terms are related to the incoming rates and all the negative terms 
related to the outgoing rates. So since it is a two-state model, if the system is in the state 0 at 
time t, there is a possibility it is not moved anywhere from the state 0 or it would have come 
from the state 1. Therefore, the incoming will be the state 1, therefore the system will be in 
the state 1 at time t and given that the starting from the state i that probability multiplied by 
the rate, sort of inflow, minus, because we are writing the equation for the state 0, therefore it 
is not moved from the state 0. That is with the rate µ it can move to the state 0 to 1. 

Therefore, -µ times it does not move from the state 0. Therefore, -µ times the probability of 
being in the state 0 at time t given that it was in the state i at time 0 that probability multiplied
by -µ that's outflow. And λPi1(t) that's the inflow. Therefore, the left-hand side it's a derivative
of the function t. It's a probability function. So Pi0'(t) that is nothing but the net rate being in 
the system at time t in the state 0 given that it was in the state I at time 0. That net rate is same
as a inflow minus outflow with the corresponding rates. 

Similarly, you can write the equation for the state 1 that means you start from the state 1. 
Either you would have come from the state 0 to the 1 or you didn't move from the state 1. 
Therefore, -λPi1(t) + µPi0(t) that is the net rate corresponding to the state 1. So now we are 
able to write the forward Kolmogorov equation. 

So this is the interpretation of the forward Kolmogorov equation. You can write easily by 
making a matrix a Pij(t)' that is equal to P(t)Q where Q is the infinitesimal generator matrix. 
Then also you will get the same thing. So I am just giving the interpretation. 

Now my interest is to find out the time dependent or transient solution for these two-state 
CTMC. For that this is a differential equation. We need initial condition to solve these 
equations. So I make the assumption at time 0 the system is in the state 1. Therefore, the
transition probability of system the P11(0) that is equal to 1. Since I made the assumption the 
system was in the state 1 at times 0, therefore that being in the state 0 that is going to be 0. So
I need both the initial conditions to solve the equation.



So let me start since I made the initial condition state is 1 therefore i is equal to 1. So I'll have
the first equation that is I always have the summation of the probability at time t, these 
transition probabilities are going to be 1, the summation. And also I have two difference of 
differential equations. So what I can do I can take the second equation in this. Then instead of
P10(t) I can use a summation of probability is equal to 1. Therefore, instead of P10(t) I can use 
the P10(t) is nothing but 1- P11(t). I can substitute in the second equation therefore I get P11'(t) 
is equal to -λ+µP11(t)+ µ. 

Substituting P10(t) is equal to 1- P11(t) in the second equation, the previous slide. Now I have 
to solve these differential equations. The unknown is P11(t). Conditional probability, I have to 
use the initial condition, P11(0) = 1 using that I can get P11(t) = µ divided by λ+ µ plus some 
constant, e-( λ+ µ)t. That constant I can find out using this initial condition. Therefore, k is equal 
to λ divided by λ+ µ. So the P11(t) is equal to substituting k = λ/λ+ µ in this equation, I’ll get 
the P11(t). Once I know the P11(t), use the first equation. So I will get P10(t) = 1- P11(t). 
Therefore, P10(t) that is equal to this expression. 

You can cross check now. If you add both the equations, you will get a 1 and if you put t = 0 
you will get the initial condition also correctly, and if you put t∞ that we are going to 
discuss in the limiting distribution, if you put t∞ in this expression, you will get µ/ λ+µ,    
λ/ λ+µ.  So this is for the t∞. Therefore, if you make a matrix, the limit tends to infinity of 
the element. 



If you find out the limiting distribution of a limit, t∞ of P(t). So you will get the matrix and
this matrix has a t∞ for this example. It's a 2x2 matrix and that consists of for different 
values, you will have -- for now you are doing for the second row therefore, that is equal to  
λ/ λ+µ, and this is equal to µ/ λ+µ. So if the system start from the state 1 at the t∞ 
the system will be in the state 0 with the probability λ/ λ+µ and the system will be in the state
1 with the probability µ/ λ+µ

Similarly, if you go for i=0 you will get the same derivation and you can fill up what is the 
element here. 



So this is the limiting distribution probability matrix and if you see that the rows are going to 
be identical. So you will have the same identical rows in this row also. So that means you will
get the limiting distribution. I will discuss the limiting distribution after giving one more 
example I will explain in detail. 

 
So this is the transition probability; system starting from the state 1 and being in the state 1 or
0 at the time t. 
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