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Now I am going to move, the stationary distribution. The stationary distribution also a very
important concept in the Markov chain and as such first I am going to give the definition of a
stationary distribution.
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The vector π is called a stationary distribution of a time-homogeneous discrete-time Markov
chain if that vector satisfies the first condition. All these values πi’s, sorry, πj’s are greater than
or equal to 0 for all j and the summation over the πj’s that is going to be 1 and the third
condition π is going to be same as π times P where P is the one-step transition probability
matrix.

So any vector π satisfies these three conditions, then that vector is going to be call it as a
stationary distribution.  This is nothing to do with the limiting distribution, the one I have
discussed earlier, but for an irreducible aperiodic Markov chain, the limiting distribution is
same as the stationary distribution.  That is also going to be same as the equilibrium or a
steady-state distribution. All these three distributions are going to be same for an irreducible
aperiodic Markov chain, but in general all these three things are going to be different. So here
I am giving the definition of a stationary distribution by satisfying these three properties. 
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Now I am going to give some important results for that. The first result is for an irreducible
aperiodic,  a  positive  recurrent  Markov  chain,  the  stationary  distribution  exists  and  it  is
unique. The one definition I have given earlier, I have discussed the aperiodic, irreducible. I
have to include the positive recurrent also because these three things are important for an
irreducible, aperiodic, a positive recurrent Markov chain, all these three distributions, limiting
distribution,  stationary  distribution,  steady state  or  equilibrium distributions,  all  three  are
same. I have to include the positive recurrent also. 

So what I am giving in this result, then π is uniquely determined by solving this equation π is
equal to πP with the summation of π’s are going to be 1. So if I solve π is equal to πP along
with the summation of π is equal to 1, that will give a unique π and that π is going to be a
stationary distribution for an irreducible, aperiodic, positive recurrent Markov chain. 

Irreducible means all the states are communicating with all other states. Aperiodic means the
periodicity for a state is 1. The greatest common divisor of a system coming back to the same
state, all the possible, possible steps, that greatest common divisor is 1. The positive recurrent
means it's a recurrent state. That means with the probability 1, the system start from one state
and coming back to the same state, that probability is 1. The positive recurrent means the
mean recurrence time that is going to be a finite value. If these three conditions are going to
be  satisfied  by  any  time-homogeneous  discrete-time  Markov  chain,  then  the  stationary
distribution can be computed using π is equal to πP and the summation is equal to 1. That is
going to be a unique value. 
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I am giving the same example. I am giving the same example that is the two-state model with
states 0 and 1 with the probability is self-loop 1 minus a and self-loop 1 minus b and the
system going from the state 0 to 1 in one step that is a and the system is going from the state
1 to 0 that probability is b. 

So I am giving a very simple two-state model and you can solve π is equal to πP and the
summation is equal to 1 and you will get the probabilities. And these probabilities is same as
the probabilities you got it in the limiting state probability.
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If you solve, yeah, if you solve the two-state model with the π is equal to πP, you will get the
probabilities that π0 is going to be b divided by a+b and π1 is going to be a divided by a+b and



it satisfies the summation of π is equal to 1 and it also satisfied π is equal to πP. That means in
this  model,  it  is  a irreducible,  aperiodic,  positive recurrent model.  Therefore,  the limiting
distribution is same as the stationary distributions also.
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The second example, that is with the infinite state. So here the number of states are going to
be countably infinite. I can start with to find out the stationary distributions, before that I have
to cross check whether it is going to be a irreducible, aperiodic, positive recurrent Markov
chain. 

It is irreducible because the way I have given the probabilities, I make the assumption the
probabilities are lies between 0 to 1 and the probability of lies -- the q is also lies between 0
to 1. Therefore, each state is communicating with each other state. Therefore, it is going to be
a irreducible. 

The second one, it is -- it has to be aperiodical. Aperiodic means the periodicity for each state
because the greatest common divisor is going to be 1 because the coming back to the state is
via self-loop or going to the some other state and coming back and there also has a self-loop,
therefore, it is going to be -- all the states are going to be aperiodic. Therefore, the Markov
chain is aperiodic. 
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The third one, positive recurrent. Since it is a infinite state model, you cannot get the -- you
cannot  come to  the  conclusion  whether  these  μ00 is  going  to  be  a  finite  quantity  unless
otherwise substituting the value of p and q. So what I will do, I will make the assumption,
assume that all states are positive recurrent. Then later I will find out what is the condition to
be a positive recurrent. 
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So I  make  the  assumption.  Even I  don't  want  to  make  the  --  I  don't  want  to  make the
assumption for all the states are going to be positive recurrent. I can make the assumption for
only one state is going to be a positive recurrent and since it is a irreducible Markov chain
and all the states are going to be of the same type, therefore, it will come to the conclusion all



the states are going to be a positive recurrent. So I make the assumption one state is going to
be a positive recurrent. Therefore, it land up all the states are going to be positive recurrent. 

Now once I made a assumption of all the states are positive recurrent, therefore, it satisfies all
the results of the first result that is a irreducible, aperiodic, positive recurrent Markov chain
with the infinite state space. Therefore, I can find out the -- I can come to the conclusion, the
limiting distribution, sorry, the stationary distribution exists and it is going to be unique and
that can be computed by solving the equation π is equal to πP with the summation of π i’s is
equal to 1 where π is the vector and P is the one-step transition probability matrix. That one-
step transition probability matrix can be created using the state transition diagram which I
have given.
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So if I take the -- if I find out what is the first equation from this vector π is equal to π 0, π1, π2

and so on, here also this and P is the matrix, therefore, I will get the first equation as π0 is
equal to π0 times 1 minus P plus π1 times q. So this is the first equation of from the matrix π is
equal to -- in the matrix form π is equal to πP. So the first equation is π0 = π0 * (1-P) + π1 q. 

So from this equation, I can get π1 because I can take this π0 this side and I can cancel. So I
will get π1 is equal to P divided by q times π0. From the first equation, we get the relation π1 in
terms of π0. 
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Now I will take a second equation from π is equal to πP. So that will give π1 is equal to π0

times P plus π1 times 1 minus P minus q plus π2 times q. So this equation I have π0, π1 and π2.
So what I can do, I can write π1 in terms of π0 and I can simplify this equation. If I simplify, I
will get π2 is same as P2 by q2 times π0. 
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Because I am substituting π1 in terms of π0 in this equation, therefore, I get π2 in terms of π0.
That is π2 is equal to P2 by q2 times π0.

Similarly, if I  take the third equation and do the same thing,  finally, I get π3 is equal  to
(P3/q3)π0. The same way I can go further. Therefore, I get πn in terms of π0 for n is equal to 1,
2, 3 and so on.
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So this is the way I can solve this equation π is equal to πP. That's a homogeneous equation.
We have to be very careful with the homogenous equation. So the trivial solutions are going
to be 0, but we are trying to find out the non-trivial solution. Therefore, we are using the
normalization, that is the summation of πi is equal to 1. Till now I have not used. So I have --
I have just simplified that π is equal to πP and getting πn in terms of π0. 

Now I have to use summation of πi is equal to 1 starting from i is equal to 0 to infinity.
Therefore, the π0 will be out 1 + P/q + P2/q2 and so on that is equal to 1. Therefore, the π0 is
going to be 1 divided by 1 + P/q + P2/q2 and so on that is π0. 
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Since it  is infinite  terms in the denominator, as long as this  is converges,  you will  get a
nonzero value for π0. In turn you will get a πi is equal to P/q power n times π0 provided this
denominator is going to be converges. 

When the denominator is going to be converges, in this situation, as long as the P/q is going
to be less than 1 if P/q is less than 1. The earlier condition is P is lies between 0 to 1 and q is
lies between 0 to 1. Now I'm making the additional condition P/q is less than 1. That will
ensure  the  denominator  converges.  Therefore,  the  π0 is  going  to  be  a  nonzero  value.
Therefore, the πn’s are going to be (P/q)n * π0 where π0 is written 1 divided by 1 + P/q + (P/q)2

and so on. So provided P/q is less than 1. 
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If you recall, we made the assumption the states are going to be a positive recurrent. If this
P/q is less than 1, then you can conclude the mean recurrence time is going to be a finite
value if you make the assumption P/q is less than 1 that will ensure the mean recurrence time
for any state is going to be a finite value. Therefore, all the states are going to be positive
recurrent and then the stationary distribution exists. 

Therefore, this is the condition for a positive recurrent state for this model and the stationary
distribution that is going to be πn is equal to (P/q)n * π0. This is nothing but in a longer run,
what is the probability that the system will be in the state n. That probability is (P/q)n this π0

and π0 is given in this form. 
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And in this example, we have taken each state for the P/q is the same for all the states. We
can go for -- go for in general situation the system going from 0 to 1 could be P 0, system
going from the state 1 to 2 may be P1 and so on. Therefore, it need not all the Pi, P’s need not
be same and the q’s also need not be same. 

So you can generalize this model and this model is nothing but a one-dimensional random
walk and here the 0 is a -- it's a barrier. The system is not going away from the 0 in the left
side. Therefore, 0 is a barrier and this is a one-dimensional random walk in which the system
is keep moving into the different states in subsequent steps and there is a possibility  the
system may be in the same state with the positive probability of 1 minus P plus q in this
model. In general, you can go for the P, P0, P1, P2 and so on and similarly q1, q2, q3 and so on
also.


