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Now I am going to discuss the simple situation in which how we can get the limiting state
probabilities. This is a simple model in which we have only two states and this two states
model is the very good example in the sense this can be interpreted as the many situation. 

For example, you can think of a weather problem in which 0 is for a rainy day and 1 is for the
sunny day and what is the probability that the next day is going to be a sunny day from the
rainy day that  probability  is  a  and from a rainy day to  sunny day, it  is  going to  be the
probability b, and the next day is going to be the same thing whether it is a rainy day or sunny
day according to the probabilities 1 minus a and 1 minus b and you can assume that both the
probabilities a and b lies between open interval 0 to 1. 

In  this  case,  this  is  a  very  simple  two-state  model.  Like  this,  we  can  give  many  more
applications can be interpreted with the two-state model with the transition probability. This
is a one-step transition probability with the P matrix that is the P matrix is the state 0 and 1, 0
and 1. So 0 to 0, 1 minus a, 0 to 1 that probability a, and 1 to 0 the probability is b and 1 to 1
that is probability 1 minus b.
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So this is the one-step transition probability matrix and from this model, you can see that it is
since a and b is open interval 0 to 1, this is going to be a irreducible Markov chain and with
the finite state space. Therefore, using the result we can conclude all the states are going to be
a positive recurrent. That can be verified from the classification of the states also. You can
verify that first one is recurrent state. That means you can find out the probability of F00 that
is going to be 1 and similarly you can conclude, you can find out F11 that is also going to be 1.
So you can conclude both the states are going to be a positive recurrent and you can find out
μ00 that is going to be a finite quantity as well as μ11 that is also going to be a finite quantity. 
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Therefore, you can conclude it is going to be a positive recurrent. 



Now our interest  is what  is  the limiting distribution? That means you find out what is  a
limiting distribution matrix. That is nothing but limit n tends to infinity P power n where P
power n is nothing but the n-step transition probability matrix that is same as the one-step
transition probability matrix power n. 
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That means you have to find out what is P power n for any n. Then you have to find out what
is the P power n matrix as n tends to infinity. 

So you can use either eigenvalue and eigenvector method or you can use the by induction
method. That means you find out P power 2, then P power 3 and so on. Then you find out
what  is  the  P  power  n  by  mathematical  induction  or  you  find  out  the  eigenvalues  or
eigenvectors. Then you find out the P power n. 
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So here I am directly giving the P power n values matrix. So this consists of four elements
with the function of a, b and n. This will exist provided the absolute of 1 minus a minus b is
less than 1. Otherwise, this won't -- P power n won't exist. Now we are going for as n tends to
infinity, what is the matrix? 

(Refer Slide Time 04:14) 

That is limit n tends to infinity, the P power n is -- that matrix is going to be, again, it is going
to be a stochastic matrix because the row sum is going to 1 and all the elements are greater
than or equal to 0. 

Therefore, if the limiting probability matrix exists, then it is going to be unique. The limit
exists means it is unique and the row sums are -- row values are -- all the rows are going to be



identical. That you can visualize. So that vector is going to be π, that is π0 and π1. So the π0 is
nothing but -- π0 is nothing but b divided by a plus b and π1 is nothing but a divided by a plus
b.

These are all the limiting state probability. That means in a longer run, in a longer run, the
system will be in the state 0 or in the state 1 and the system will be in the state 0 in a longer
run with the probability b divided by a plus b. In a longer run, the system will be in the state 1
with the probability a divided by a plus b. 

Note that these probabilities are independent of initial state i. That means whether you start at
time 0 in the state 0 or 1, it doesn't matter. In a longer run, the system is going to be in the
state 0 or 1 with these probabilities. So this is the situation for a time-homogeneous discrete-
time Markov chain with the finite state space and irreducible Markov chain. Therefore, all the
states  are positive recurrent  and we are getting the limiting  state  probabilities,  which are
going to be independent of initial state. 

So this information is going to be useful later. Based on this, I am going to (inaudible 06:09)
three different probabilities distribution. The one is a limiting distribution. The next one is a
stationary distribution. The third one is the steady state or equilibrium distribution. 

In general, all these three results are -- all three, these three distributions are different. That is
the limiting distributions, stationary distributions and steady state or equilibrium distribution.
All three are different in general, but there are in some situation that means for a special case
of discrete-time Markov chain, all these three results are going to be same. So for that this
example is going to be important one. 
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Now I  am going  to  discuss  the  ergodicity.  This  is  a  very  important  concept  in  the  any
dynamical system, but here we are discussing the Markov process or with the -- or we are



going to discuss the time-homogeneous discrete-time Markov chain, but the ergodicity is the
important concept for any dynamical system. 

So I can give the easy definition that is it is necessary and a sufficient condition for existence
of Vj's that is nothing but some probability, state probabilities. If that is satisfying, Vj's are
going to be summation Vi Pij and the Vi’s are going to be -- summation is going to be 1 for j in
case of irreducible aperiodic Markov chain, then we are going to say the system is a ergodic
system. That means whenever the system is a irreducible and aperiodic Markov chain and
then that system is going to be call it as a ergodicity -- ergodic Markov chain or the absorb --
this  process  is  called  the ergodicity. That  means  if  you have a  irreducible  and aperiodic
Markov chain, the ergodicity properties are satisfied. 

What is the use of ergodicity property in the Markov chain? Since it is a irreducible and
aperiodic, these are limiting distributions. These probabilities are going to be independent of
initial state. Therefore, this is used in the discrete event simulation. That means if you want to
find out the what is the proportion of the time the system being in some state in a longer run,
that you can compute by finding the -- that is nothing but the limiting probabilities and this
limiting probability is the same as these probabilities Vj's can be computed in this way using
the  one-step  transition  probability  matrix  and  that  probability  is  going  to  be  always
independent of an initial distribution. 

That means whatever the seed you are going to provide in the discrete event simulation, that
doesn't matter and you are interested only in the longer run what is the proportion of the time
the system being in some state. So that can be easily computed for a ergodic system. That
means before you use the ergodic property in the any dynamical system, you have to make
sure that that system is a irreducible aperiodic. Then you can use the ergodicity concept.


