
Good morning. This is a Stochastic Process, Module 4: Discrete-time Markov 
Chain. This is the Lecture 2.

And in this lecture, we are going to discuss about the Chapman-Kolmogorov 
equations. Then we are going to discuss the N-step Transition Probability 
Matrix, and we are going to discuss a few more examples in this lecture.



In the last class, we have discussed the transition probability of J to K in N 
steps as the probability that the X, m+n takes a value k given that the Xm 
was J, fir n is great not equal to 0 and J belonging to S. Since the underlying 
DTMC is a time homogeneous, this is the N-step transition probability of 
system is moving from the state J to K in N steps. So this we denoted as a 
conditional probability of P J, K in N step transition probability, where I, J is 
belonging to S, where S is the state space and the N can take the value great
not equal to 0. Also, we have discussed in the last class what is the one step 
transition probability of P J, K. We can write it within the (1) or we can 
remove the 91) in the superscript also. That is nothing but what is the 
probability that the system will be in the state K in the n+1 at the step given 
that it was in the state J in the N step, here also J, K belonging to S. So this is 
the one step transition probability. So our interest is to find out what is the 
distribution of Xn. Whenever the sequence of random variable Xn is a time 
homogeneous a DTMC, our interest is to find out the distribution of Xn.

So it has the probability mass function, the Pj of n that is nothing but what is 
the probability that the system will be in the state J at the N step, so the J is 
belonging to S and the n can be 1 or 2 and so on, because you know the 
distribution of n=0, that means you know the initial probability vector of X0. 
So our interest is to find out what is the distribution of Xn for m=1, 2, 3 and 
so on.



So how we are going to find out this distribution? So this distribution can be 
written using the Pj of n is nothing but the summation over I belonging to S, 
such that the system was in the state I at 0th step and multiplied by what is 
the probability that it will be in the state J given that it was in the state I at 
0th step. So this is nothing but what is a probability that the system will be in
the state J at the end of the step, that is same as what are all the possible 
ways the system would have been moved from the state I from the 0th step 
to the state J at the Nth step. So this is a product of one marginal distribution
and one conditional distribution for all possible values of I that gives the 
distribution of Xn in the Nth step.

So for that you need to compute this distribution of Xn, you need N step 
transition probability as well as the initial distribution vector or initial 
probability vector or the distribution of X naught. So the distribution of X 
naught can be given as the vector P of 0. This vector P of 0, it consists of the 
element what is the probability that X naught takes the value 0, what is the 
probability that X naught takes a value 1, what is the probability that X 
naught takes the value 2, and so on. So this is the initial probability vector. 
Why we have taken the state 0, 1, 2, and so on unless otherwise as 
mentioned in the set of the state space that is going to be the possible 
values of 0, 1, 2, and so on, unless otherwise it is assumed you can take 
always this values. So this is the initial probability vector or initial distribution
vector.

So what we need, what is the N step transition probability of the system will 
be in the state J given that it was in the state I at the 0th step. This is what 



do you want to find out, what is the conditional probability mass function of 
N step transition probability vector, so that we can write it in the form of Pi, j 
of superscript n that is nothing but the probability of the system will be in the
state J given that the system was in the state I at the 0th step. That is we 
need to compute the N step transition probabilities that is a Pi, j of n.

So this can be computed by using the method called a Chapman-Kolmogorov
equations. So this Chapman-Kolmogorov equation provide a method for 
computing this N step transition probabilities.

So how we are going to derive this Chapman-Kolmogorov equation that I am 
going to do it now. So we are going to derive the Chapman-Kolmogorov 
equations for the time homogeneous discrete time Markov chain. So let the 
Pi j of superscript n that is nothing but what is the probability that the X m+n
takes a value J given that Xm was I. Since the discrete time Markov chain is 
the time homogeneous, so this is the transition probability of system moving 
from the state I to J from the M at step 2, m+n at the step. Therefore, this 
transition is the N step transition probability matrix for the time 
homogeneous discrete time Markov chain.

Let us start with the 2-step. The 2-step is nothing but what is the probability 
that system is moving from the state I to J in two steps. So n+2 takes a value
J given that the Xn was I. This is for all n it is true, because the DTMC is this 
time emerges. So this probability you can write it as this 2-step transition 
probability of system moving from I to J, the state I to the state J in two steps,
that you can write it as what are all the possible ways the system is moving 



from the state I to J by including one more state in the first step the state is K
given that the system was in the state I in the Nth step for all possible values
of K belonging to S. I can write this a conditional 2-step conditional 
probability mass function from the Nth step to n+2 second step, that is same
as I can include one more possible state of K in the n+1 of the step.

Now I can expand these as that is same as for possible values of K and what 
is the probability that the system was in the state J in the n plus second step 
and the system was in the state K in the n+1 naught step. The system was in
the state I in the Nth step, divided by what is the probability that in the Nth 
step it is in the state I. The numerator joint distribution of these three state – 
these three random variables that I can write it as in the form of conditional, 
what is the conditional probability that the X n+2 takes a value J given that X
n+1 takes the value K and the Xn takes a value I product of X n+1 takes the 
value K, X n takes a value I, divided by what is the probability that X n takes 
a value I and here the summation is over the key. So basically, I am writing 
the numerator joint distribution of these three random variables as the 
product of our conditional distribution with the marginal distribution of those 
two random variable.

Since the X I’s are the time homogeneous Markov chain, this conditional 
distribution by using the Markov property is same as the conditional 
distribution of X n+2 takes a value J given that only the latest value is 
important. The latest value is needed, not the previous history; therefore, 
because of the memoryless property X n takes a value I is removed. 
Therefore, this conditional distribution is the conditional distribution to only X



n+1 with the X n+2. Similarly, I can apply the joint distribution of these two 
random variables X n+1 and Xn, I can again write it as the probability of the 
X 1+1 takes a value K given that Xn takes the value I and the probability of 
Xn takes a value I, whole divided by probability of X n and takes the value I. 
So this and this get cancelled, so this is nothing but the conditional 
probability, this is nothing but the one-step transition probability of system 
moving from K to J and the second term is a one-step transition probability of
system is moving from I to K.

Therefore, the left-hand side we have what is the two-step transition 
probability of I to J is same as all possible values of K what is the one-step 
transition probability of system is moving from I to K and the one step 
transition probability of K to J. So this product will give the two-step transition
probability of system is moving from the state I to J. That is same as what is 
the possible values of K, the system is moving from the state I to K and K to 
J. So this is for the two-step. Similarly, by using the induction method, one 
can prove I to J of m+1 step that is same as what is the possible values of K, 
the system is moving from one-step from I to K and m steps from K to J. This 
is a two-step so this one step from I to K and one Step from K to j, by 
induction I can prove the m+1 step will be I to K and K to J in n step. 
Similarly, I can make it in the other way around also. It is I to K in n steps and
to K to J in one step also. That combination also land up. The m+1 step the 
system is moving from I to J.

In general, we can make the conclusion, the system is moving from I to J in in
n+m steps, that is same as the possible values of K of probability of system 



is moving from I to K in m steps and the n step the system is moving from K 
to J. That will give -- for all possible values of k, that will give the possibility of
system is moving from I to J in n+m steps. So this equation is known as 
Chapman Kolmogorov equation for the time homogeneous discrete time 
Markov chain.

So whenever you have a stochastic process as time homogeneous discrete 
time Markov chain, then that satisfies this equation and this equation is 
known as the Chapman Kolmogorov equations. In the matrix form, you can 
write the capital P is the matrix which consists of the element of one-step 
transition probability method, one-step transition probabilities. In that case, if
you make m=1 and n=1, then the matrix of P of superscript 2, that is the in 
matrix form of a two-step transition probability. That is nothing but if you put 
n=1 and m=1, you will get P x P and that is going to be P square. So the 
right hand side the P of superscript (2) means, it is a two-step transition 
probability matrix, and the right hand side the P square that is the square of 
the P matrix where P is the one-step transition probability matrix.

So in this form, in general, you can make the N step transition probability 
matrix is nothing but P of n for n is greater than or equal to 1. For n=1, it is 
obvious; for n=2 onwards, the P power n. That is same as the N step 
transition probability matrix.

Hence, so now we got the n step transition probability is nothing but the P 
power n, where P is the one-step transition probability matrix. Therefore, in 
matrix form, I can give the P of n, the P of n is nothing but in the matrix form 



of the distribution of Xn or this is nothing but the vector which consists of the
Nth step where the system will be. So this is nothing but what is the 
probability that in the Nth step, the system will be in the state 0 or in the Nth
step the system will be in the state 1 and in the Nth step, the system will be 
in the 2 and so on. This is the vector. So the P of n, you can find out in the 
matrix form by using the above equation. It is going to be P of 0 that is also 
vector, the initial probability vector, multiplied by P power P of (n), that is N 
step transition probability matrix, but the N step transition probability matrix 
is nothing but the P power n. Therefore, this is same as the P of 0 into P 
power n.

In the last slide, we got a P of superscript within (n), that is the N step 
transition probability matrix is same as the one-step transition probability 
with the power n. Therefore, this is going to be the distribution of e Xn in the 
vector form, that is same as the P 0 multiplied by P power n, where the P is 
nothing but the one-step transition probability matrix. That means if you 
want to find out the distribution of Xn for any n, you need only the initial 
probability vector and one-step transition probability matrix. Because the 
discrete time Markov chain is a time homogeneous, we need only the one-
step transition probability matrix and the initial probability vector that gives 
to find out the distribution of Xn for any n. So with the help of one-step 
transition probability matrix and the initial probability vector, you can find 
the distribution of Xn for any n.


