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The concepts of MRGP are given in next two definitions. 

The first definition,  a sequence of bivariate random variables (Yn,  Sn) is called a Markov
renewal sequence or Markov renewal process. S0 = 0. In this example also we made it S0 = 0.
Sn+1 is greater than or equal to Sn and Yn is belonging to Ω' where Ω is the state space, Ω' is
the subset of Ω. For all n greater than or equal to 0, the Yn, the conditional distribution of Yn

has to satisfy this property. 

The first line, the probability of Yn+1 is equal to j with the difference of time instants is less
than or equal to t given that the system was in the state, some state at Y0 at the time instant S0

till the system was in the state i at the time instant Sn. This conditional distribution is same as
the conditional distribution with the only the latest information the probability of Yn+1 is equal
to j, the difference of regeneration time points is less than or equal to t given only Yn is equal
to i. That means the conditional distribution depends only the current information or latest
information, not the complete history. So that is nothing but the Markov property.



Next, that is same as the conditional distribution of instead of Yn to Yn+1, you can find out the
distribution of Y0 to Y1 because of it is a time invariant, because of it is a time homogeneity,
this conditional distribution is same as probability of Yn is equal to j, the first time, the first
regeneration time point is less than or equal to t given that Y0 is equal to i. 

So that  means the  conditional  distribution  depends the  current  state,  not  the  past  history
including the time homogeneous property. Then the -- that is a way we define the bivariate
random variables that is (Yn, Sn) satisfies this property. 
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Then the MRGP is defined as follows: 

A stochastic process Z(t) with the state space Ω is called a Markov regenerative process if
there exists a Markov renewal sequence (Yn, Sn) such that all conditional finite dimensional
distribution of Z(Sn  + t) given Z(u) where u is lies between 0 to Sn, Yn is equal to i are the
same as those of Z(t) given Y0 is equal to i. So this is the probabilistic replica. 

The stochastic process Z(t) is said to be a Markov regenerative process if all conditional finite
dimensional distribution of Z(Sn + t) given all the past history till Sn including Yn is equal to i,
that is same as the distribution of Z(t) given Y0 is equal to i. That means it includes a time
homogeneity as well as the Markov property. 

Note that the abode definition implies that  Z(Sn
+)  or Z(Sn

-)  is an embedded discrete time
Markov  chain  or  just  embedded  Markov  chain  in  Z(t).  Also  Sn is  the  stopping  time  or
regeneration points. Stopping time is nothing but the Markov property is satisfied at those
time points for the given stochastic process. 

So, in this example, before the arrival occurs, Z(Sn
-) is an embedded discrete time Markov

chain just before the arrival occurs -- will be an embedded Markov chain in this example. 
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The way we discussed the semi-Markov process with the transition probability matrix and the
sojourn time distribution, here we have to explain the global kernel and the local kernel. So
that we are going to discuss now. 

We denote the conditional probability in the equation number (2) by Ki, j(t).
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Equation number (2) is nothing but the conditional distribution of Yn+1 is equal to j with the
difference of time in time -- regeneration times are less than or equal to t. That is same as
because of Markov property and the time homogeneous property, this is the probability of Yn

is equal to j, S1 is less than or equal to t given Y0 is equal to i. 



A Markov renewal sequence is also defined in the bivariate as this and usually this form of
definition is frequently used since renewal time, and the state of the time and the state of the
system at renewal instant, both are important. 

So this conditional  probability  becomes the transition probability. That is  this  conditional
probability will form a matrix K(t) and that is called a global kernel of the Markov renewal
sequence. For the Markov renewal sequence, we can find the global kernel and the global
kernel is the matrix K(t) that consists of Ki,  j(t) where each Ki,  j(t) is nothing but probability
that P(Y1) = j  with S1 is less than or equal to t given Y0 = i. 
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Now we are going to discuss the local kernel. That is also a matrix that consists of E i,  j(t)
where i is belonging to Ω' and j is belonging to Ω. Ω' means the collection of states at which
the time transitions of the -- the system satisfies the Markov property at those time instance,
those collection of states forms the Ω' and that is a subset of Ω. 

So Ei, j(t) is nothing but what is the probability that the system will be in the state j with the
first regeneration time point is going to be greater than t. That means the system will be in
this state j after the time t. The first regeneration going to occur after time t. The system will
be in the state j at the time t given it was in the state i at the previous regeneration time point
or at S0 the system was in the state i. So this will form a -- this will form a local kernel. 

So using global kernel and the local kernel, one can find the steady-state and the transient
behaviour of Markov regenerative process. 

Now we are going to discuss the limiting distribution or steady-state measures. 
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We study the limiting behaviour of the MRGP by taking limit as t approaches infinity. 

We require two new variables to be defined, namely, the mean time αi, j of the MRGP spends
in the state j between two successive regeneration instants, time instants given that it started
in the state i after the last regeneration. So this is nothing but the average spending time in the
state j given that it was in the state i at the last regeneration. 

So αi, j is nothing but the expectation of time in state j during the interval 0 to S1 where S1 is
the first regeneration time instant given that the system was in the state i at the previous or
last  regeneration  time and the steady-state  probability  vector  v  of the embedded Markov
chain that means v is equal to vP and the summation of vk’s is equal to 1 where k is belonging
to Ω' and P is the one-step transition probability matrix of embedded Markov chain. 

So from the global kernel K, that is the K(t), if you make a t tends to infinity, you will get the
one-step  transition  probability  matrix  P. So  from  using  P, you  can  get  the  steady-state
probabilities v by solving v = vP and the summation of vk is equal to 1. Once you solve the --
this using the αi, j, you can get the limiting distribution. 
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So the limiting distribution is given in the following theorem. 

Let Z(t) be the MRGP with the Markov renewal sequence (Yn, Sn). Let N(t) denotes the total
number of states changes by time t. Then the sample path of Z(t) are right continuous with the
left limits and the N(t) is a semi-Markov process, the YN(t) is a semi-Markov process, which is
irreducible, aperiodic and positive recurrent and v is a positive solution to the equation (4)
that is this one, summation of vi is equal to 1 and v = vP. If these properties are satisfied, then
the steady-state probability vector π whose elements are πj’s, that is nothing but the limit t
tends to infinity probability of Z(t) is equal to j using this formula where vk’s are nothing but
the summation of αk’s. 

So as long as these three properties are satisfied, that means the sample path has to be right
continuous  and  the  semi-Markov process  has  to  be  irreducible,  aperiodic  and a  positive
recurrent and you need a positive solution, the steady-state probability vector, then you can
get the steady-state probability for the Markov regenerative process.
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