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In other words, if Y(t) is a Semi-Markov Process, then the process Y(t + tn) is independent
of...

A  Semi-Markov  Process  is  thus  a  stochastic  process  in  which  changes  of  state  occur
according  to  a  Markov  chain  and  in  which  the  time  interval  between  two  successive
transitions is a random variable whose distribution may depend on the state from which the
transition takes place as well as on the state to which the next transition takes place. 

Y(t).

Y(t). Y(t + tn) is independent of Y(t) given the complete past history Y(t) and Xn = i and is
identical to the process Y(t) given X0 = i because of time homogeneity. Not only Y(t + tn) is
independent  of Y(t),  it  is also identical  to the process Y(t)  given X0 = i  because of time
homogeneity. It is satisfying the time invariant property also. 

So it  is  very button when the Markov property is  satisfied at  the time in transition time
instants tn, then the stochastic process is called a Semi-Markov Process.
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Thus, in a semi-Markov process, the Markov property is satisfied only at  the each of the
transition epochs and not at all times. 

This is very important. The Markov property is satisfied only at the each of the transition
epochs tn, not at all the times. If the Markov property is satisfied at all the time -- all times,
then the stochastic process is called the Markov process. Since it satisfies only at each of the
time transition instance, the Markov process is called a semi-Markov process. 

The fact that the Markov property holds at each of the transition epochs tn of the stochastic
process Y(t) entails the Markov property also holds for Xn. Since Xn is nothing but the Y(tn),
therefore, the Markov property is satisfied for the stochastic process Xn, not for the Markov
property is satisfied for the Y(t) for all times. 

Hence,  Xn turns out  to be the time-homogeneous embedded Markov chain with the state
space Ω. Y(t) is a stochastic process and the X of n is nothing but the Y(tn) where tn is the
transition  time instance and the Markov property is  satisfied only at  all  the time,  all  the
transition time instants. Therefore, Xn form a discrete-time Markov chain. Since Xn is Y(tn),
this Xn stochastic process is called an Embedded Markov Chain. 

Xn stochastic process is embedded in this stochastic process Y(t). Therefore, Xn is a time-
homogeneous embedded Markov chain because it satisfies the time invariant property as well
as Markov property. Therefore, Xn is the time-homogeneous embedded discrete-time Markov
chain. 

Now we can say (Xn, tn) constitute a Markov renewal process or semi-Markov process with
the state space Ω. Xn is an embedded Markov chain where Xn is Y(tn) and Tn is nothing but
the  transition  time  instance.  Therefore,  the  together  (Xn, Yn)  constitutes  Markov renewal



process because these are all the time points in which the system is moving into the different
states and the Markov property is satisfied only at those time points. Therefore, it is called the
semi-Markov process or Markov renewal process with the state space Ω. 
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The stochastic  process --  the stochastic process Y(t)  is not a Markov process although it
inherits some important properties of Markov processes. 

The associated process that is Xn is a Markov process. Hence, the name (Xn, Yn) as a semi-
Markov process. 
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In conclusion, a continuous-time stochastic process in which the embedded jump chain (that
is nothing but the discrete process registered what values the process takes), so the embedded
jump chain is a Markov chain. 

In conclusion, a continuous-time stochastic process which embedded as a Markov chain and
where  the  holding  times  are  random  variables  with  any  general  distribution  whose
distribution function may depend on the two states between which the move is made, we say
it is called -- we say it is semi-Markov process or Markov renewal process. Whenever these
properties are satisfied, we say the stochastic process is a semi-Markov process or Markov
renewal process. 

The semi-Markov processes are non-Poissonian with the renewal property. This means that
the probability of a jump from a state i to j at a certain time depends only on the states i, j and
the time t since the last jump occurred. 

If you restrict the holding times are exponential distribution and each time transition instance
are the renewals, then the special case of the semi-Markov process is a Poisson process, but
in general, semi-Markov processes are non-Poissonian. If you make assumptions of holding
times  are exponential  distribution  with the same parameter  and each time transitions  are
nothing  but  the  renewals,  then  the  special  case  of  semi-Markov  process  is  the  Poisson
process. 

A semi-Markov process where all the holding times are exponential distribution is called a
continuous-time  Markov  chain.  So  if  I  restrict  only  the  holding  times  are  exponential
distribution, the each transition need not be the renewals, then a semi-Markov process is a
continuous-time Markov chain. 

Now we are going to discuss the steady-state measures of semi-Markov process.

(Refer Slide Time 08:27) 



The analysis of a semi-Markov process is performed in two stages. In the first stage, the
semi-Markov process stays in a state i for some random amount of time.
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For example,  in the sample path of a semi-Markov process,  in this  model,  we have four
straight semi-Markov process. So in the each state, the system stays a random amount of
time. 

Let us consider that the time spent in state i follow a general distribution with the distribution
function Hi(t). That means in this example, H1(t), that is the time spent in this system spent in
the state 1. H2(t) is the distribution of the system staying in the state 2 and so on.



In the second stage, the SMP moves from the state i to j with the probability P i, j where Pi, j is
defined what is the probability that the system was in the state i at the n th time instance. The
system will  be in the state j  at  the (n+1)th time instant;  i,  j  belonging to Ω. So that is  a
conditional probability. The conditional probability of P Xn+1 is equal to j given Xn is equal to
i for i, j belonging to Ω. 

So the SMP can now be completely described by the vector of sojourn time distributions H(t)
and the transition probability matrix P, that is Pi,  j. So the transition probability matrix is the
transition probability. Therefore, all the row sums are equal to be 1 and the values are lies
between 0 to 1, and you have to supply the sojourn time distribution for each state. So if these
two information are given, then we are known with semi-Markov process. 
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To compute the steady-state probability vector, let us assume that π is the vector; π1, π2 are the
elements of a semi-Markov process. First calculate the mean sojourn time that is nothing but
the small hi. Since Hi(t) is the distribution function, so 1 minus Hi(t) the integration between 0
to infinity will be the mean sojourn time because each -- each random variable is a non-
negative  random  variable.  Therefore,  the  mean  will  be  0  to  infinity  1  minus  the  CDF
integration for each state i. 

Next find the steady-state probability vector vi’s for the embedded Markov chain of the semi-
Markov  process.  First  you  have  to  find  out  the  steady-state  probability  vector  for  the
embedded Markov chain of the semi-Markov process and using the steady-state probability
vector and the mean sojourn time you can get the steady-state probability vector of -- steady-
state probability vector π. 

So how to find the steady-state probability vector of embedded Markov chain? So you know
P is the transition probability matrix. So solve v = vP and summation of v i is equal to 1. You
will get vi’s. The v = vP is the homogeneous equation and including summation of vi is equal



to 1, you will have a non-homogeneous system of equation. So you can get the non-trivial
solutions satisfying these two conditions. 

So  once  you know the  vi’s,  you can  compute  the  steady-state  probabilities  of  the  semi-
Markov process. That is nothing but vi’s multiplied by hi’s divided by summation of all the
vj’s hj’s where j is belonging to Ω. So the vi’s are nothing but the steady-state probability
vector of embedded Markov chain and hi’s are nothing but the mean sojourn time and πi’s you
will get by using this formula. 
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Now let us consider the simple example the stochastic process with the state space Ω = {1, 2,
3, 4}. 

In the previous -- previous steady-state measures with the assumption that the steady-state
probability vector probability -- probabilities exist,  we are giving the how to compute the
steady-state  probability  measures.  So here the assumption is  steady-state probabilities  are
exist.

Now we come to the example.
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So this is a four state stochastic process with the states 1, 2, 3, 4 and H i’s are nothing but the
CDF of sojourn time in each state and Xn is nothing but Y(tn) and (Xn, tn) will form a Markov
renewal process or semi-Markov process. 
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Assume that the time spent in the states 1 and 2 follow exponential distributions with the
CDF H1 and H2 whereas the time spent in the states 3 and 4 follow uniform distribution with
the CDF H3(t) and H4(t).
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So the sojourn time in the state 3 is uniformly distributed between the intervals 1 and 2, and
the sojourn time spent in the state 4 is also uniform distribution between the intervals 2 and 3.
Therefore, the CDFs are in this form H3(t) and H4(t). 
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The semi-Markov process moves from the state i to j with the probability Pij. That is nothing
but the transition probability matrix can be in the form the states are 1, 2, 3, 4. Therefore, in
the one-step transition probability of system is moving from 1 to the state 2 is sure, therefore,
that probability is 1 and all other probabilities are zeros. 
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Similarly, the system moved from the state 2 to 3. That probability will be 1 and all other
states moving probabilities are 0. Therefore, all other transition probabilities from the state 2
to 1, 2 to 4 are zero whereas 2 to 3 will be -- 2 to 3 will be will be 1. Similarly, 3 to 4 will be
1 and all other states, all other transition probabilities are zeros. Then the system moving
from the state 4 to 1 is 1 and all other states are 0. 

So you know the transition probability matrix as well as you know the mean -- you know the
sojourn time distribution. So using the transition probability matrix, by solving you can get
the steady-state probability vector of embedded Markov chain. 
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If  you see the transition probability  matrix,  since it  is  a transition probability  matrix,  the
values are lies between 0 to 1 and the row sum is 1, but in this particular transition probability
matrix, it satisfies the one more additional condition, the column sum is also 1. 

Therefore, if you solve the v is equal to vP and the summation of vi is equal to 1, the solution
will be 1 divided by the number of states. So the steady-state probabilities are uniformly
distributed,  uniform  distribution.  So  number  of  states  are  4.  Therefore,  the  steady-state
probability of the embedded Markov chain is 1/4. 

So you know the steady-state probabilities of embedded Markov chain and from the sojourn
time distribution you can find out the mean sojourn time. Since the first two random variables
sojourn --  first  two states  sojourn  times  are  exponential  distribution,  therefore,  the  mean
sojourn time is 1/2, 1/3 respectively for the states 1 and 2 and the sojourn time in the state 3 is
uniform distribution between the interval 1 to 2. Therefore, the mean sojourn time is 3/2 and
for the state 4, the sojourn time distribution is uniform distribution between the intervals 2 to
3. Therefore, the mean sojourn time is 5/2. 

So  using  transition  probability,  sorry,  using  the  steady-state  probability  --  steady-state
probabilities of embedded Markov chain and the mean sojourn time -- using the steady-state
probabilities of embedded Markov chain and the mean sojourn time -- times, you can get the
steady-state probabilities of semi-Markov process.


