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Generating Functions, Law of Large Numbers and Central Limit Theorem

Now we are going to discuss few generating functions.
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So the first  one is  called probability  generating function.  So this  is  possible  only with a

random variable is a discrete random variable and the possible values of xi has to take zero or

1 or 2 like that, that means if the possible values of the random variable x takes value only

zero,  1,  2  and so on,  then  you can  be  able  to  define  what  is  the  probability  generating

functions for the random variable x as with the notation Gxz.

That is probability generating function for the random variable x as a function of z, that is

nothing but summation z power i, and what is the probability x takes the value i for all the

possible values of i. That means if the discrete random variable takes only countably finite

value,  then  the  probability  generating  function  is  a  polynomial.  If  the  discrete  random

variable takes a count ably infinite values, then it is going to be the series.

So this series is going to be always converges and you can able to find out what is the value

at 1 that is going to be 1. And since it is going to be z power i by differentiating you can get,

there is easy formula or there is a relation between the moment of order n with the probability



function in the derivative of n-th derivative and substituting z is equal to one. And if suppose

x is going to be a binomial distribution with the parameters n and p, then you can find out

what is the probability generating function for the random variable x.

That is going to be one minus p plus p times z power n, because the binomial distribution has

the possible values are going to be zero to n. Therefore, you will get the polynomial of degree

n. Suppose x is going to be a Poisson distribution with the parameter lambda, because this is

also a discrete random variable and the possible values are going to be countably infinite,

whereas here the possible values are going to be countably finite.

So  here  also  you  can  find  out  what  is  the  probability  mass  function,  sorry  what  is  the

probability generating function for random variable x and that is going to be e power lambda

times z minus one. So like that you can find out a probability generating function for only of

a discrete type random variable with a possible values to be countably finite or countably

infinite with zero, 1, 2, and so on.
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The  next  generating  function,  which  I  am  going  to  explain,  that  is  moment  generating

function. The way we use the word moment generating function, it will use the moments of

all order n. That means it uses the first order moment, second order moment, and third order

moment. And you can define the moment generating function for the random variable x as a

function of t, that is nothing but expectation of e power x times t provided the expectation

exist, that is very important.



That means since I am using the expectation of a function of a random variable and that too

this function is e power xt you can expand e power xt as 1 plus xt by factorial 1 plus xt power

2 by factorial 2 and so on. Therefore, that is nothing but the moment generating function for

the  x  is  nothing  but  expectation  of  this  expansion.  That  means  expectation  of  one  plus

expectation of this plus expectation of this plus one.

That means if the moment of all order n exists, then you can able to get what is the moment

generating function for the random variable x. That is the provided condition is important as

long as the right hand side expectation exists, you can give the moment generating function

for  the random variable  x.  So here also many properties  are  there,  I  am just  giving one

property Mx of zero going to be one.

And there are some property which relate with the moment of order n with the derivative of

moment generating function. And I can give one simple example, if x is going to be binomial

distribution with the parameters n and p, then the moment generating function for the random

variable x that is going to be one minus p plus p times e power t power n.

Similarly, if  x  is  going to  be Poisson with the  parameter  lambda,  then you may get  the

moment generating function is going to be e power lambda times e power t minus one. And

you can go for continuous random variable also. If x is going to be a normal distribution with

the parameters mu and sigma square, then the moment generating function is going to be e

power t times mu plus half sigma square t square.

So this  is  very  important  moment  generating  function,  because we are  going to  use this

moment generating function of normal distribution in the stochastic process part also. There

is some important property over the moment generating function.
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Suppose  you  have  n  random variables  and  all  xis  random variables  are  iid,  that  means

independent  identically  distributed random variable.  That  means the distribution of, when

you say the random variable x and y are identically distributed. That means the CDF of x and

the CDF of y are same. For all x and y both the values are going to be same, then you can

conclude both the random variables are going to be identically distributed.

So here I am saying the n random variables are iid random variables. That means not only

identical they are mutually independent also. If this is the situation, my interest is to find out

what is the MGF of sum of n random variables, that is Sn. So the moment generating function

for the random variable Sn is going to be the product of the MGF of individual random

variable.

Since they are identical the MGFs is also going to be identical. Therefore, this is same as you

find out MGF of any one random variable then make the power. So this independent random

variables having the property when you are trying to find out the MGF of sum of random

variable, that is same as the product of MGF of individual random variables.

Here, there is a one more property over the MGF, suppose you find out the MGF of some

unknown random variable and that matches with the MGF of any standard random variables,

then you can conclude the particular unknown random variable is also distributed in the same

way. That means the way you are able to use the CDFs are same, then the corresponding

random variables are identical.



Same way if the MGF of two different random variables are same, then you can conclude the

random variables also identically distributed.
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Third we are going to consider the another generating function that is called characteristic

function. This is important than the other two generating function, because the probability

generating  function  will  exist  only  for  the  discrete  random  variable.  And  the  moment

generating  function  will  exist  only  if  the  moments  of  all  order  n  exist,  whereas  the

characteristic function exist for any random variable.

Whether  the  random  variable  is  a  discrete  or  the  moments  of  all  order  n  exist  or  not,

immaterial  of that the characteristic function exist  for all the random variable.  That I am

using the notation phi suffix x as a function of t, that is going to be expectation of e power i

times xt. Here the i is the complex number, that is the square root of minus one. So this play a

very  important  role  such  that  this  expectation  is  going  to  be  always  exist,  whether  the

moment exist or not. 

Therefore, the characteristic function always exists. You can able to give the interpretation of

e power this is same as minus infinity to infinity e power i times tx d of CDF of that random

variable. So that means whether the random variable is a discrete or continuous or mixed you

are integrating with respect to the CDF of the integrant function is e power i times tx, where i

is a complex quantity and if you find out the absolute. 



This absolute, this is going to be using the usual complex functions you can make out this is

going to always less than or equal to one in the absolute sense. Therefore, this integration is

exist and this integration is nothing but the Riemann–Stieltjes integration. And if the function

is going to be the if the random variable is continuous, then you can able to write this is same

as minus infinity to infinity e power i times tx of the density function integration with respect

to x. That means, this is nothing but the four way transform of f.

And here we have this f is going to be the probability density function and you are integrating

the probability density function along with e power i times tx and this quantity is going to be

always converges whereas the moment generating function without the term i, the expectation

may exist or may not exist. Therefore, the MGF may exist or may not exist for some random

variable.

And I can relate with the characteristic function with the MGF with the form phi x of minus i

times t, that is same as MGF of the random variable t. That means I can able to say what is a

MGF of the random variable x that is same as the characteristic function of minus i times t,

where i is the complex quantity. And here also the property of the summation of, suppose I

am trying to find out what is the characteristic function of sum of n random variables.

And each all the random variables are iid random variable, then the characteristic function of

Sn is same as, when xis' are iid random variable, then the characteristic function each random

variable power n. And this also has the property of uniqueness, that means if two random

variables characteristic functions are same, then you can conclude both the random variables

are identically distributed.

So  as  a  conclusion,  we  have  discussed  three  different  function,  first  one  is  probability

generating function, and the second one is moment generating function and the third one is

characteristic function. And we are going to use all those functions and all other properties of

joint probability density function and distribution and everything, we are going to use it in the

at the time of stochastic process discussion.

Next we are going to discuss what is the, how to define or how we can explain the sequence

of random variable converges to one random variable.
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Till now, we started with one random variable then using the function of the random variable

you can land up another random variable or from the scratch you can create another random

variable, because random variable is nothing but a real valued function satisfying that one

particular property inverse images also belonging to f. Therefore, you can create many more

or countably infinite random variables are uncountably many random variables also over the

same probability space.

That means you have a one probability space and in the single probability space you can

always create either countably infinite or uncountably many random variables and once you

are able to create many random variables. Now our issue is what could be the convergence of

sequence  of  random variable.  That  means  if  you  know the  distribution  of  each  random

variable and what could be the distribution of the random variable Xn as n tends to infinity.

So in this, we are going to discuss different modes of convergence, that is the first one is

called convergence in probability. That means, if I say a sequence of random variable Xn

converges to the random variable some x in probability. That means if I take any epsilon

greater than zero, then limit  n tends to infinity of probability of absolute of Xn minus X

which is greater than epsilon is zero.

If this property is satisfied for any epsilon greater than zero, then I can conclude the sequence

of random variable converges to one particular random variable x in probability. That means

this is a convergence in probability sense. That means you collected possible outcomes that

find out the different of Xn minus X, which is in the absolute greater than epsilon.



That means you find out what are all the possible event which is away from the length of two

epsilon, you collect all possible outcomes and that possible outcomes is that probability is

going to be zero, then it is convergence in probability. That means you are not doing the

convergence in the real analysis the way you do, you are trying to find out the event, then you

are finding out the probability. Therefore, this is called the convergence in probability.

The second one it is convergence almost surely. So this is the second mode of convergence,

this notation is Xn converges to X a dot s dot. That means the sequence of random variable

has n tends to infinity converges to the random variable x has n tends to infinity that is almost

surely, provided the probability of limit n tends to infinity of Xn = x, or Xn is equal to capital

X, that is going to be one.

That means first you are trying to find out what is the event for n tends to infinity the Xn

takes the value X. That means you are collecting the few possible outcomes that as n tends to

infinity what is the event which will Xn same as the X. Then that event probability is going to

be one if this condition is satisfied, then we say it is going to be almost surely. I can relate

with the almost surely with if any sequence of random variable converges almost surely that

implies Xn converges to X in probability also.
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This is a third mode of convergence, that means if the sequence of random variable CDF

converges  to  the CDF of the random variable  X,  then you can say that  the sequence of

random variable is converges to the random variable in distribution and I can conclude the



sequence of random variable converges in almost surely implies in probability, that implies in

distribution, where as the converse is not true.

And when I categorise this into the law of large numbers as a weak law of large numbers and

strong law of large numbers, if the mean of Xn that converges to mu in probability, then we

say it is weak law of large numbers. Similarly, if the convergence in the almost surely, then

we conclude this is going to be satisfies the strong law of large numbers.
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The final one that is the central limit theorem. You have a sequence of random variable with

each are iid random variables and you know the mean and variance and if you define the Sn

is in the form, then Sn minus n mu divided by sigma times square root of n, that converges to

standard normal distribution in convergence in distribution.

That  means  whatever  be  the  random variable  you have,  as  long as  they  are  iid  random

variable  and  even  these  things  can  be  relaxed,  the  sequence  of  random  variable  the

summation will converges to the normal distribution or their mean divided by the standard

deviation will converges to the standard normal distribution. With this, I complete the review

of  theory  of  probability  in  the  two  lectures.  Then,  the  next  lecture  onwards  I  will  start

stochastic process. Thank you.


