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So one more thing that is a conditional expectation.
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So since I said x given y is a random variable, I can go for finding out what is the expectation

of x given y. So this is called the conditional expectation. That means the x given y is the, still

it  is  a  random  variable,  but  it  is  a  conditional  distribution.  Therefore,  finding  out  the

expectation for that, that is called the conditional expectation.

Suppose  I  treat  both  the  random  variable  are  continuous  case,  then  the  conditional

expectation  is  nothing,  but  minus  infinity  to  infinity  x  times  f  x  given  y  of  x  given  y

integration with respect to x. That means by treating x and y are continuous random variable,

I can able to define the conditional expectation is this provided this expectation exist. That

means in absolute sense if this integration converges.

Then without absolute whatever the value we are going to get that is going to the conditional

expectation of the random variable. And if you note that since the y also can take any value,

therefore this is a function of y. Not only this is a function of y, the conditional expectation is



a random variable also. That means x given y is a random variable, the expectation of x given

y is a function of y and y is a random variable. It takes a different values x.

Therefore, expectation of x given y is also a random variable. That means you can able to

find out what is the expectation of, expectation x given y. If you compute that it is going to be

expectation of x. This is a very important property in which you are relating two different

random variables with the conditional sense and if you are trying to find out the expectation

of that, that is going to be the original expectation.

That means the usage of this concept instead of finding out the expectation of one random

variable, if it is easy to find out the conditional expectation then you find out the expectation

of conditional expectation that is same as the original expectation. Suppose you have two

random  variables  or  independent  random  variables,  then  you  know  that  there  is  no

dependency over the random variable x and y.

Therefore, the expectation of x given y that is same as the expectation of x. So this can be

validated here also because this expectation of x given y is going to be expectation of x is a

constant and the expectation of a constant is a constant that is same as the same constant, so

that can be cross checked. So here I have given expectation of x given y in the integration

form, if both the random variables are continuous.

Then  accordingly  you  have  to  use  initially  the  joint  probability  mass  function  then

conditional probability mass function to get that conditional expectation and this conditional

expectation is very much important to give one important property called Martingale property

in the stochastic process, in which you are going to discuss not only two random variables,

you are going to discuss, you have n random variables.
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And you can try to find out what is the conditional expectation of one random variable, given

that other random variable takes some value already. So there we are going to find out what is

the conditional expectation of n dimensional random variable with given that remaining n

minus 1 random variable take already some value. So here I have given only with the two

random variables how to compute the conditional expectations.

But as such you are going to find out the conditional expectation of n random variables with

n minus 1 random variables already taken some values.
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So before I go to another concept, let me just give a few examples in which I have already

given if  both the random variables  are of a  discrete  type,  I  have given example  of joint



probability mass function as 1 divided by 2 power x plus y and x takes a value 1, 2 and so on

and y takes a value 1, 2 and so on. So this is the joint probability mass function example. 

Suppose you have  random variables  of  the  continuous  type,  then  I  can  give  one  simple

example of the joint probability density function of two dimensional continuous type random

variable  as joint  probability  density  function,  lambda times mu e power minus lambda x

minus mu y, where x can take the value greater than 0, y can take the value greater than 0,

and lambda is strictly greater than 0 as well as mu greater than 0.

So this is going to be the joint probability density function of a two dimensional continuous

random variable. You can cross check this is going to be joint because it is going to be always

take greater than or equal to 0 values for all x and y and if you make a double integration over

minus to infinity over x and y, then that is going to be 1. And you can verify the other one.

If  you find  out  the  marginal  distribution  of  this  random variable,  you  may  land  up the

marginal distribution of this random variable is going to be lambda times e power minus

lambda x and similarly if you find out the marginal distribution of the same, one, you will get

mu times minus mu y, and if you cross check the product is going to be the joint probability

density function, then you can conclude both the random variables are independent random

variable.

Similarly,  you  can  find  out  what  is  the  marginal  distribution  of  the  random variable  x,

similarly marginal distribution of y, if you cross check the similar property of independent,

then that is satisfied, therefore, you can conclude here the random variables x and y both are

discrete as well as both are independent random variable also. So the advantage with the

independent random variable, always from the joint you can find out the marginals.

But  if  you have  marginals,  you cannot  find  out  the  joints  unless  otherwise  they  are  the

independent random variable. Therefore, the independent random variables makes easier to

find out the joint distribution with the provided marginal distribution. And here is the one

simple example of bivariate normal distribution.
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In which, both the random variables x and y are normally distributed, therefore the together

joint distribution is going to be of the form.
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Let me write the joint probability density function of two dimensional normal distribution

random variable as 1 divided by 2pi, sigma 1, sigma 2, multiplied by square root of 1 minus

rho square into e power minus half times 1 minus rho square multiplied by x minus mu 1 by

sigma 1 whole square minus 2 times rho into x minus mu 1 by sigma 1 that is multiplied by y

minus mu 2 by sigma 2 plus y minus mu 2 by sigma 2 whole square.

So  here  if  you  find  the  marginal  distribution  of  the  random  variable  x  and  marginal

distribution of y, you can conclude x is going to be normally distributed with the mean mu 1

and the variance sigma 1 square and similarly you can come to the conclusion y is also



normally distributed with the mean mu 2 and the variance sigma 2 square, that means if you

make the plot for the joint probability density function, that will be of the shape.

One is the x and one is the y and this is going to be the joint probability density function for

fixed  values  of  mu 1,  mu 2 and sigma 1 and sigma 2 and this  is  going to  be the joint

probability  density  function  and  here  rho  is  nothing  but  the  correlation  coefficient.  That

means what is the way the random variable x and y are correlated that comes into the picture

when you are giving the joint probability density function of this random variable.

And they are not independent random variable, unless otherwise the rho is going to be zero.

So if the rho is going to be zero, then its gets simplified and you can able to verify the joint

probability density function will be the product of two probability density function and each

one is going to be a probability density of a normal distribution with a mean mu 1 and the

variant sigma 1 square and mu 2 and sigma 2 square.

So this  bi-variant  normal  distribution  is  very important  one,  when you discuss  the multi

nominal  normal  distribution.  So  only  we  can  able  to  give  the  joint  probability  density

function  of  the  bi-variant,  so  the  multi-variant  you  can  able  to  visualize  how  the  joint

probability density function will look like and what is the way the other factors will come

into the picture.

So other than covariance correlation and correlation coefficient,  we need the other called

covariance matrix also.
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Because in the stochastic process, we are going to consider n dimensional random variable as

well as the sequence of random variable, so you should know how to define the covariance

matrix  of  n  dimensional  random variable.  That  means,  if  suppose  you have  a  n random

variables x1 to xn, then you can define the covariance matrix as, you just make rows x1 to xn

and column also you make x1 to xn, now you can fill up.

This is going to be n xn matrix in which each entity is going to be covariance of, so that

means the matrix entity of i, j is nothing but what is the covariance of that random variable xi

with xj. You know that the way I have given the definition covariance of xi and xj, if i and j

are same, then that is nothing but e of x square minus e x whole square. Therefore, that is

nothing but the variance of that random variable.

Therefore,  this  is  going to be variance of x1 and this  is  going to be the variance of x2.

Therefore, all the diagonal elements are going to be variance of xi. Whereas other than the

diagonal elements, we can fill it up this is going to be a covariance of x1 with x2 and like that

the last element will be covariance of x1 with xn. Similarly, second row first column will be

covariance of x2 with x1.

You can use the other property the covariance of xi, xj is same as covariance of xj with xi

also. Because you are trying to find out expectation of x into y minus expectation of x into

expectation of y. Therefore, both the covariance of x2 with x1 is same x1 with x2. So it is

going to be a, whatever the value you are going to get, it is going to be the symmetric matrix

and all the diagonal elements are going to be the variance.



So the way I have given the two dimensional normal distribution, that is a bivariant normal,

suppose you have n dimensional random vector, in which each random variable is a normal

distribution, then you need what is the covariance matrix for that, then only you can able to

write what is a joint probability density function of n dimensional random variable.


