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Now I am going to discuss the simple situation in which how we can get the limiting state

probabilities, this is a simple model in which we have a only two states and this two states model

is the very good example in the sense this can be interpreted as the many situation. For example,

you can think of a weather problem in which zero is for a rainy day and one is for the sunny day.

And what is the probability that the next day is going to be a sunny day from the rainy day that

probability is ‘a’ and from rainy day to sunny day it is going to be the probability ‘b’ and the next

day is  going to  be the  same thing whether  it  is  a  rainy day or  sunny day according to  the

probability is 1 minus a and 1 minus b. And you can assume that both the probabilities a and b

lies between open interval 0 to1.

In this case, this is a very simple two state model like this we can give many more applications

can be interpreted with the two state model with the transition probability, this is a one step

transition probability with a P matrix.
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That is the P matrix is the state 0 and 1 - 0 and 1, so 0 to 0 1 minus a, 0 to 1 that probability a and

1 to 0 that property is b and 1 to 1 that is probability 1 minus b, so this is a one step transition

probability matrix and from this model you can see that it is a since a and b is open interval 0

to1, this is going to be a irreducible Markov chain and with a finite state space therefore using

the result we can conclude all the states are going to be a positive recurrent.

That can be verified from the classification of the states also, you can verify that first one is

recurrent state that means you can find out the probability of F 0 0 that is going to be 1 and

similarly, you can conclude - you can find out F 1 1 that is also going to be 1, so you can

conclude both the states are going to be a positive recurrent and you can find out mu 0 0, that is

going to be a finite quantity as well as a mu 1 1, that is also going to be a finite quantity.

Therefore, you can conclude it is going to be a positive recurrent, now our interest is what is the

limiting distribution that means you find out what is a limiting distribution matrix that is nothing

but a limit n tends to infinity P power n, where P power n is nothing but the n step transition

probability matrix that is same as a one step transition probability matrix the power n, that means

you have to find out what is a P power n for any n.



Then, you have to find out what is the P power n matrix as n tends to infinity, so you can use a

either eigenvalue and eigenvector method or you can use the by induction method that means

you find out P power 2 then P power 3 and so on, then you find out what is the P power n by

Mathematical Induction or you find out the eigenvalues or eigenvectors then you find out the P

power n.
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So here I am directly giving the P power n values matrix so this consists of 4 elements with a

function of a b and n, this will exist provided the absolute of 1 minus a minus b is less than 1,

otherwise this won't P power n won't exist, now we are going for as n tends to infinity what is the

matrix? 
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That is limit n tends to infinity the P power n is that matrix is going to be again it is going to be a

stochastic matrix, because the row sum is going to be 1 and all the elements are greater than or

equal to 0, therefore if the limiting probability matrix exist, then it is going to be unique at the

limit exists means it is unique and the row sums are - row values are all the rows are going to be

identical that you can visualize.

So that vector is going to be pi, that is pi 0 and pi 1, so the pi 0 is nothing but - pi 0 is nothing but

b divided by a + b and pi 1 is nothing but a divided by a + b, these are all the limiting state

probability that means in a longer run -  in a longer run the system will be in the state 0 or in the

state 1 and the system will be in the state 0 in a longer run with the probability b divided by a + b

in a longer run the system will be in the state 1 with the probability a divided by a + b.

Note that these probabilities are independent of a initial state i that means whether you start at

time 0 in the state 0 or 1 does not matter in a longer run the system is going to be in the state 0 or

1 with these probabilities, so this is the situation for a time homogeneous discrete time Markov

chain  with the  finite  state  space  and irreducible  Markov chain.  Therefore,  all  the  states  are

positive recurrent.

And we are getting the limiting state probabilities which are all going to be independent of initial

state so this information is going to be useful later based on this I am going to distinguish three



different probabilities distribution, the one is a limiting distribution the next one is the stationary

distribution the third one is the steady-state or equilibrium distribution. 

In general, all these three results are all these three distributions are different that is the limiting

distributions, stationary distributions and steady state or equilibrium distributions all three are

different in general, but there are in some situations that means for a special case of discrete time

Markov chain all these three results are going to be same so for that this example is going to be

important one. Now I am going to discuss the ergodicity.
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This is a very important concept in the any dynamical system, but here we are discussing the

Markov process or the - or we are going to discuss the time homogeneous discrete time Markov

Chain but the ergodicity is important concept for any dynamical system, so I can give the easy

definition that is it is necessary and sufficient condition for existence of V j’s, that is nothing but

a some probability state probabilities.

If that is satisfying V j's are going to the summation V i's, P i j and the V i's are going to be

summation is going to be 1 for j, in case of irreducible aperiodic Markov chain then we are going

to  say  the  system  is  a  ergodic  system  that  means  whenever  the  system  is  irreducible  and

aperiodic Markov chain and then that system is going to be call it as a ergodicity ergodic Markov

chain or the observer this process is called the ergodicity.



That means a if you have a irreducible and aperiodic Markov chain the ergodicity property is

satisfied, what is the use of ergodicity property in the Markov chain? Since it is a irreducible and

aperiodic this limiting distributions this probabilities are going to be a independent of a initial

state therefore this is used in the discrete event simulation.

That means if you want to find out the what is the proportion of the time the system being in

some state in a longer than that you can compute by finding the that is nothing but the limiting

probabilities and this limiting properties same as this probabilities V j's can be computed in this

way using the one step transition probability matrix and that probability is going to be always the

independent of an initial distribution.

That means whatever the you are going to provide the discrete event simulation that does not

matter and you are interested only in the longer run what is the proportion of the time the system

being in some state, so that can be easily computed for a ergodic system that means before you

use the ergodic property in the any dynamical system, you have to make sure that - that system is

a irreducible aperiodic, then you can use the ergodicity concept.


