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Good morning, this is a module 4, lecture 5, Limiting Distributions, Ergodicity and Stationary

Distribution. In the last 4 lectures we have discussed the discrete time Markov chain starting with

the definition,  transition probability  matrix  then in the second lecture we have discussed the

Chapman-Kolmogorov equations.

Then we have discussed the one step transition probability matrix followed by that we have

discussed the end step transition probability matrix in the lecture 3 we have classified the states

of the discrete time Markov chain as a recurrent that is a positive recurrent and null recurrent

transition states absorbing state and periodicity then we have in the fourth lecture we have given

a simple examples.

In  the  fifth  lecture,  we are  going  to  discuss  the  limiting  distributions,  ergodicity,  stationary

distributions.
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If  I  am not able  to complete  limiting distributions  and the ergodicity  then I will  discuss the

stationary distribution in the next lecture, and followed by the limiting distribution and ergodicity

I am going to give some examples also. So the introduction what is the meaning of a limiting

distribution? It is very important concept in time homogeneous discrete time Markov Chain.

And the limiting distribution is going to give some more information about the behavior of the

discrete time Markov Chain and before I move into the limiting distribution let me discuss the

some of the important results then I am going to give the limiting distributions.
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So consider  the  Doeblin's  formula  that  is  F  j  k  in  terms  of  a  limit  m  tends  to  infinity  of

summation.
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You we - we know that the P i j of n is nothing but what is the probability that the system will be

in the state j given that the system was in the state i, whereas the f - F j k can be written as in

terms of F j k n where n is running from 1 to infinity, here the f j k of n is nothing but the first

visit to the state k starting from the state j in n-th step. And all the combination of n steps that

will give F j k.

So now, you see the F j k is nothing but the limit m tends to infinity the summation divided by 1

+ the summation in particular we can go for k equal to j, so that is nothing but 1 minus this, now

based on the state is recurrent transient and so one I can discuss the further results.
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The first result the state j is going to be a recurrent if and only if the summation of P j j of n has

to be infinity, the if and only if means, if the recurrent the state is recurrent then you can come to

the conclusion this summation of the probability not the first visit starting from the state j to j in

n steps, that summation is going to be infinity, if for any state j the summation is going to be

infinity then that state is going to be recurrent.
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The second result suppose the state is a transient then you can have the P j j of n tends to infinity

as n tends to infinity, this you can conclude easily, if the state is transient then you know that the

F j j is going to be less than 1, the probability of the system coming back to the state is going to

be less than 1, therefore the P j j of n tends to infinity as n tends to infinity for the transient state.

And also if the state is a transient then sorry, if the summation is going to be a finite quantity

then you can conclude the state is going to be a transient.
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Based on this I am going to give the next theorem that is basic limit theorems of renewal theory.

I'm not  giving the  proof  here I  am just  only  stating the  theorem if  the state  j  is  a  positive

recurrent  that  means  the  state  is  going  to  be  a  recurrent  as  well  as  it  satisfies  the  positive

recurrent property that means the mean recurrence time is going to be a final value for that state

j, then the P j j of n that will tends to t divided by mu j j.
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Where mu j j is nothing but the mean recurrence time for the state j and the t is nothing but the

periodicity for the state j, if the periodicity is going to be 1, then as a n tends to infinity the P j j

of n that is nothing but what is the probability that the system start from the state j and reaches



the state j  in n steps will  tense to the 1 divided by the mean recurrence time for a positive

recurrence state with the aperiodic, if state j is transient then limit P j j as n tends to infinity is 0.
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In a case of null recurrent if the state j is an null recurrent then you know that for a null recurrent

the mean recurrence time is going to be infinity, therefore as n tends to infinity the P j j of n will

tends to 0.
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Now I am going to give some more important results for a discrete time Markov chain, here I am

considering a time homogeneous of discrete time Markov chain only, so for irreducible Markov

chain  all  the  states  are  of  the  same  type,  that  means  if  the  Markov  chain  is  going  to  be



irreducible, that means which state is communicating with each other state then only the Markov

chain is going to be call it as a irreducible Markov chain.

That means for our irreducible Markov chain all the states are of the same type that means if one

state is going to be a positive recurrent then all the states are going to be positive recurrent, if one

state is going to be a null recurrent then all the states are going to be null recurrent. The second

result for a finite Markov chain, the discrete time Markov chain with the finite state space at least

one state must be a positive recurrent.

This can be proved easily but here I am not giving that proof at least one state must be a positive

recurrent, because it is a finite Markov chain that means it has a finite states, therefore the mean

recurrence time that is nothing but on average time spending in the state starting from the state j

and coming back to the states j that mean recurrence time that is going to be always a finite value

at least for a one state.

Now I am combining the result one and two gives the third result that means the finite Markov

chain has a at least one positive recurrent state and the first results state - first result states that if

the Markov chain is irreducible then all the states are of the same type therefore the third result is

for irreducible finite Markov chain. That means it is a time homogeneous discrete time Markov

chain with a finite state space.

And all the states are communicating with all other states that is a irreducible, then all the states

are going to be a positive recurrent.
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Now I  am describing  the  limiting  distributions,  the  limiting  distributions  means  what  is  the

probability that the system starting from the state i and reaches the state j as a n-th steps as n

tends to infinity, so this is nothing but this is the definition of a Limiting state probabilities, we

are only considering a time homogeneous discrete time Markov chain if this limit is going to

exist then it is going to be unique.

So what is the limiting state probability for any time homogeneous discrete time Markov chain

whether it will exist if it exists what is a value, so that's what we are going to discuss in the

further in this class, in this lecture.
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Suppose  limiting  probability  is  independent  of  initial  state  of  the  process  V naught  vector,

suppose I am just making the assumption if the limiting probability is going to exist as well as if

it is a independent of a initial  probability distribution we can write as a V j,  because that is

nothing to do with I so V j is nothing but what is the limiting state probability of system being in

the state j as n tends to infinity, that is nothing but limit n tends to infinity P i j of n.

So now I can write a vector V consists of V naught, V 1 so those entries are nothing but the

limiting state probabilities.
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So this I can compute as a V k is equal to summation j, V j, P j, k that means the P j k is nothing

but the one step transition probability so that possibility summation will give V k, now I can

replace V j by again the submission over i, V i, P i, j, I can do simple calculations it lands up V k

is equal to summation i, V i, P i, k of 2.

Again I can repeat the same thing for V I, so I will get a V k is equal to submission over i, V i, P

i, k of n, for n is greater than or equal to 1, that means that this is the entry of a n step transition

probability matrix having the probability that is a probability of the system is moving from the

state i to k in n steps for n is equal to 1 2 3 and so on.


