Stochastic Processes - 1
Dr. S. Dharmaraja
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Lecture — 11
Problems in Random Variables and Distribution (Contd..)
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So in this example, we observed that N and U are independent random variables.
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And also by seeing probability of U greater than t that is e power —lambda +Mu t, you can
conclude U is the exponential distribution with the parameter lambda + Mu. Now we move

into the next example.
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Let x be a random variable having binomial distribution with parameters capital N and P,
where capital N is a random variable having Poisson distribution, with mean lambda.
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The question is find the marginal distribution of x or find the probability mass function of the
random variable x? Given N is Poisson distribution with the parameter lambda that means the
probability mass function for the random variable N is; e power — lambda lambda power N

divided by n factorial, the possible values of n are 0, 1, 2 and so on. Our interest is to find out

what is the probability mass function of the random variable x?

That is same as n=0 to infinity. What is the conditional probability of the random variable x
takes the value k given, the other random variable N takes the value small n, multiplied by

probability of N takes the value n. That is same as, the n takes the value from k to infinity n



factorial divided by k factorial * n- k factorial and p power k 1-p power n-k multiplied by

lambda power n e power — lambda divided by n factorial.

So no need of a n=0 to k-1 because the capital N takes the value small n, therefore the
running index from k to infinity. That is same as you can take some terms outside that is
lambda power k e power — lambda e power k divided by k factorial. The remaining terms that
is a n is running from k to infinity. This can be written in the form of lambda times 1-p power
n-k divided by n-k factorial.
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That is same as lambda p power k multiplied by ¢ power — lambda by k factorial, the
summation n=k to infinity and so on that becomes e power lambda times 1-p. Therefore,
further you can simplify therefore the probability of x takes the value k is same as lambda p
power k e power — lambda lambda p divided by k factorial, where k takes the value 0, 1, 2,

and so on.

Hence the conclusion is the random variable x which is Poisson distributed with the
parameter lambda times p. So this problem occurs in many situations of a stochastic

modelling, therefore we have discussed these example in this lecture.



