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In the last lecture we have covered conditional expectation, expectation of x given y and 

its properties; filtration f of t t over the time, t over the 0 to infinity and its properties; 

then conditional expectation of a random variable x of t given that filtration f of s and its 

properties. In this model we will discuss an important property of stochastic process 

martingale. 

 



(Refer Slide Time: 01:16) 

 

 (Refer Slide Time: 01:24) 

 

The martingale referred to a class of betting strategies popular in eighteenth century. The 

concept of martingale in probability theory was introduced by Paul Levy and much of 

the original development of the theory was done by Joseph Doob. Part of the motivation 

for that work was to show the impossibility of successful betting strategies. 
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The definition of martingale is as follows: Let omega, F, P be a probability space. Let T 

be a fixed positive number. Let the collection of a filtration F of t where t over from 0 to 

capital T be a sub-sigma fields of F. So, the f is the sigma field and the filtrations are the 

sub-sigma fields of the F and the probability space is defined in omega F and t is the 

fixed positive number; using that we got a filtration of sub-sigma fields in the range 0 to 

capital T. 

If the expectation of x of t exist for fixed t x of t is a random variable. So, if the 

expectation of x of t exist or in other words in the random variable is integrable; also if x 

of t is F t measurable. This also we discussed in the last lecture. Whenever we say the 

random variable is a F t measureable, that means in the sigma field generated by the 

random variable x of t that should be contained in F of t. If this property satisfied by the 

random variable for a given filtration F of t, then we say for a given sigma field, we say x 

of t is F t measurable. So, the second condition is x of t is F t measurable. 

The third condition not only for a fixed t the expectation exists and the random variable 

is F t measurable. The conditional expectation that is expectation of x of t given the 

sigma field F of s is same as the random variable x of s. The s can take the value from 0 

to small t, where t can take the value from s to capital T. If these three properties are 

satisfied by a collection of random variables, that is stochastic process x t, then we say 

the random the stochastic process has martingale property. 



So in this definition, we started with the probability space and we fix some positive 

integer positive number, using that we create a filtration and those filtrations are nothing 

but sub-sigma fields of F. F is a sigma field. If you have a collection of random 

variables, that is a stochastic process, for fixed t it is a random variable. So, that random 

variable satisfies the integrable property and F t measurable property and conditional 

expectation over the sub-sigma field F of s; that is nothing but the filtration. 

That is same as the random variable x of s. In that property satisfied for all s and t lies 

between the interval 0 less than or equal to s less than t less than or equal to capital T, 

then we say the collection of random variable x of t or the stochastic process x of t has 

the martingale property. So here, this stochastic process satisfies the martingale property 

in the interval 0 to capital T. 

Because we are checking the conditional expectation in the interval 0 to capital T; 

therefore, this stochastic process has a martingale property in the interval 0 to capital T 

not 0 to infinity. If that is satisfied for all t, then we can say that random variable or that 

stochastic process x of t; this stochastic process x of t has a martingale property in the 

range 0 to infinity. 
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Now we present the definition of martingale in discrete time. A sequence of random 

variables that is X n n varies from 1, 2, and so on of random variables has a martingale 

property with respect to the filtration F n where n is also running from where n also takes 



the value from 1, 2, and so on. If for fixed n the random variable is integrable, there is 

expectation exist, and also each random variable X n is F n measurable. 

The third condition the conditional expectation of X n plus 1 given the filtration F of n is 

same as X n for every n. Then we say the stochastic process has the martingale property 

for the collection of random variable or stochastic process has the martingale property. 

So, this is the definition corresponding to the discrete time; the previous definition is for 

continuous time. 
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Equivalent definition of martingale is as follows: A real-valued adapted process X of t 

where t is lies between 0 to capital T to the filtration F of t where t is lies between 0 to 

capital T with expectation is finite, expectation exist is a martingale for instance N of t 

minus lambda t for t greater than or equal to 0 with the intensity lambda with respect to 

the natural filtration F of t t greater than or equal to 0 is a martingale. Here N of t is a 

Poisson process. 
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Some remarks are as follows: The martingale property is equivalent to the conditional 

expectation of X n minus X m given the filtration F of m is equal to 0 for every m less 

than n with the martingale property same as the conditional expectation with the 

difference of the random variable; expressing that the increments X n minus X m given 

the past F m has expected value 0. The martingale is a stochastic process that, on the 

average, given the past, does not grow or decrease, that is the meaning of the above 

expression. 

A martingale is a stochastic process that, on the average, given the past, does not grow or 

decrease. If it increase or if it decrease, we have a different name for that particular 

property. Now we are discussing it does not grow or decrease. So that is called, that 

stochastic process is called martingale, A martingale has a constant mean; that means if 

you have a stochastic process satisfying the three conditions, hence the stochastic process 

has a martingale property or the stochastic process is a martingale, then the expectation is 

going to be constant; that is expectation of X n is same as expectation of x naught for all 

n. 

Note that Markov property can also be given in terms of expectations. In other words, the 

expectation of X n is same as expectation of X m for all n. That is same as a martingale 

is thus a stochastic process being on average stationary; average stationary means it has 

the time invariant property in average or in mean usually in the stationarity property or 



the time invariant properties discussed in the distribution. But here in the martingale it 

has a expectation of X n is equal to expectation X naught for all n. 

Therefore a martingale is the stochastic process being on average stationary. These above 

remarks are also valid for continuous time; while martingale concepts involve 

expectation, the Markov process concepts involve distribution. Whenever you discuss a 

stochastic process with a martingale property, it involves the conditional expectation; 

whereas whenever you discuss the stochastic process with Markov property, it involves 

the conditional distribution. 

A Markov process need not necessarily be a martingale because the stochastic process 

having a Markov property; therefore, it is going to be a Markov process. A stochastic 

process having a martingale property; martingale concepts involve conditional 

expectation whereas the Markov property concept involves the distribution. Hence a 

Markov process need not necessarily be a martingale. The martingale has a lot of 

applications in branching processes and finance. 
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Now we are going to consider the few examples. Example 1: Let X 1, X 2 be a sequence 

of independent random variables with expectation of X n is equal to 0 for all n. We are 

not giving the distribution of the random variables; we have said it is a sequence of 

random variable and all the random variables are mutually independent and you know 

the expectation of the random variable is equal to 0 for all n. Now you are defining a new 



random variable S naught is equal to 0 and S n is equal to sum of first n random variables 

X i’s for all n is equal to 1, 2, and so on. 

The filtration F n is defined from the sigma field generated by the n random variables X 

1 to X n with the sigma-algebra generated by the first n X i’s. Now we are trying to 

compute what is the conditional expectation of S n plus 1 given the filtration F of n; that 

is same as conditional expectation of you can replace S n plus 1 by S n plus X n plus 1 

because that is the way we define S n. S n plus 1 is going to be first n plus 1 random 

variables, the first n random variables will be S n, the last term will be X of n plus 1. 

The way we created the filtration F n is nothing but the sigma field is generated by the 

first n random variables; therefore, the S n random variable is the F n measure. Because 

each X i’s are F n measurable, each X n is F n measurable, the S n is nothing but the first 

n random variable X i’s random variable summation; therefore, S n is also F n 

measurable, X n plus 1 is independent of F n, because F n is the information till first n X 

i random variables; therefore, X n plus 1 is independent of F n. 

Therefore, a conditional expectation of S n plus 1 given the filtration F n the information 

up to n; that is nothing but since S n is a F n measurable, therefore S n is known, because 

you know the information till n; that means S n is also known. Therefore, S n has to be 

treated as a constant. So, the conditional expectation of S n given F n is going to be S n. 

The second term the conditional expectation of X n plus 1 given F n; since F n is 

independent of X n plus 1, it is not the information up to n is not going to affect the value 

of X n plus 1 for the random variable X n plus 1. 

Therefore, it is a just instead of conditional expectation it is a expectation of X of n plus 

1. But already we have made expectation of n is equal to 0; therefore, the expectation of 

n plus 1 it is for all n expectation of n is equal to 0. Therefore, expectation of X of n plus 

1; this is also 0. Therefore, the conditional expectation is going to be S n. Since you 

know the information up to n, the S n is a value. So, the conditional expectation of a S n 

plus 1 given F n is equal to S n; this is nothing but the martingale property; the last 

condition of martingale property in a discrete time. 

Whenever you want to conclude the given stochastic process is a martingale has a 

martingale property, three conditions has to be checked. The first one is expectation 

exist, you can find out the expectation of S n. Since expectation of X n is 0, expectation 



of S n is also 0. In the second condition, the S n has to be a F n measurable; that is also 

verified. In the third condition, the conditional expectation has to be S n; this is also 

verified. 

So, since three conditions of the definition which we discussed for the discrete time 

satisfied, we conclude the given stochastic process S n, the collection of or the sequence 

of random variables S n has a martingale property. This martingale property is with 

respect to the filtration F n. Because this martingale property is with respect to this 

filtration, there may be a possibility this stochastic process may not have the martingale 

property with respect to some other filtration. So, the given stochastic process S n has a 

martingale property with respect to this filtration F n. 
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In the second example, this stochastic process is a continuous time discrete state 

stochastic process. So, here let N of t where t varies from 0 to infinity be a Poisson 

process with intensity lambda or parameter lambda and the F of t is its natural filtration. 

The natural filtration means it has the information till time t and each random variable N 

of t for fixed t is F t measurable; that is the meaning of a natural filtration. 

We know that for fixed t N of t is a Poisson distributed random variable with the 

parameter lambda. Therefore, the mean of N of t that is same as the parameter lambda. 

So, the first condition is satisfied. The second condition for fixed t, N of t has to be F t 

measured. Since it is a natural filtration, the N of t is a F t measurable. The third 



condition we are going to verify. The conditional expectation of N of t given F of s 

where F of s is the filtration at time s or the information till s; obviously, here s is less 

than t. So, to find out this conditional expectation, what we do? We add and subtract N 

of s with the N of t; instead of conditional expectation of N of t given F of s, we will 

subtract N of s and add N of s. 

Expectation is a linear operator; therefore, you can split these three terms into two 

different conditional expectations. Therefore, the first one you can keep N of t minus N 

of s; in the second one you can keep it separately N of s. Hence you have conditional 

expectation of N of t minus N of s given the filtration F of s plus conditional expectation 

of N of s given F of s. In the first term, this conditional expectation is nothing but you 

know the information till time s and we are asking the conditional expectation of N of t 

minus N of s given F of s; that means this t minus s and s, this is a non-overlapping 

intervals; s is a point, t minus s is the non-overlapping intervals. 

So, this is the random variable corresponding to the non-overlapping interval with 

respect to s. Therefore, you know the property of Poisson process for s less than t N of t 

minus N of s is nothing but the increments. Thus the increments are stationary and 

independent. Therefore, the N of t minus N of s is independent of F of s. If it is 

independent, the conditional expectation is nothing but expectation of N of t minus N of 

s. You know the Poisson process properties. Since N of t is a Poisson process, N of t 

minus N of s for fixed t and s this is a Poisson distributed random variable with the mean 

lambda times t minus s. 

Therefore this conditional expectation will be lambda times t minus s based on the N of t 

minus N of s is independent of F of s and for fixed s and t, N of t minus N of s is a 

Poisson distributed random variable with the mean lambda times t minus s. Whereas the 

second term, conditional expectation of N of s given F of s; that means, for information 

till time s, what is the expectation of N of s at the same time s. So, since you know the 

information till or up to the time, s N of s is constant. N of s is a constant; therefore, 

expectation of constant is a constant; therefore, it is a N of s. It is not a lambda time s 

because you know the information till time s. 

Once you know the information till time s; that means you know the value of N of s also. 

Once you know the value of N of s; therefore, N of s is no more the random variable. So, 



it is a constant. So, expectation of a constant is a constant. So, it is N of s. Hence its 

conditional expectation of N of t given F of s is same as you can take lambda t in this 

side. So, conditional expectation of N of t minus lambda t given F of s is same as N of s 

minus lambda times s. 

If you see this is an expectation of N of t minus lambda s given F of s, that is same 

expression. Therefore, as such expectation of N of t given F of s is not N of s. It has the 

some positive value t minus s is always greater than 0. Therefore, lambda times t minus s 

will be greater than 0. Therefore, this conditional expectation is always greater than or 

equal to n of s. Hence N of t is a not a martingale whereas if you treat N of t minus 

lambda t as a stochastic process over the t ranges from 0 to infinity, then this stochastic 

process is a martingale. 

The N of t is not satisfying is same as N of s; the condition expectation is not equal to N 

of s, but it is greater than or equal to N of s. Therefore, N of t is not a martingale; 

whereas if you make a another stochastic process that is nothing but N of t minus lambda 

times t or t greater than or equal to 0, then this stochastic process satisfies the third 

condition and also satisfies the other two conditions. Therefore, the N of t minus lambda 

t is a martingale. 

(Refer Slide Time: 26:23) 

 

Third example: This is related to the application of finance. Consider the binomial tree 

model. Let S n be a stochastic process and F n be the natural filtration. Define the 



probability of S n plus 1 given u times S n given F n; that is same as that is P and the 

probability of S n plus 1 is equal to d times S n given F n is equal to 1 minus P, where u 

and d are the next value of S n with the probability p and q respectively. Therefore, 

suppose the previous the n th value was S n, then the next value will be it is decremented 

with d; therefore, d times S n or it would have been incremented with u. Therefore, u 

times S n will be the S n plus 1 th value. 

Therefore this stochastic process is called the binomial tree model. Now I am 

considering the discounted stochastic process; that is nothing but e power minus r times 

basically e power r t S of t. Since it is a discrete time stochastic process, the first S 1 is 

multiplied by e power minus r, whereas the second random variable S 2 is multiplied by 

e power minus 2 times r and so on. Therefore the nth random variable S n will be e 

power minus n times r, where r is the riskless interest rate. 

So whenever you multiplied the e power minus r times t, the corresponding stochastic 

process is called the discounted stochastic process. The discounted stochastic process is a 

martingale if only if the right hand side is equal to e power minus n times r times S n, 

because here it is a conditional expectation of e power minus n plus 1 times r S n plus 1 

given F n. If this quantity is same as e power minus n times r multiplied by S n, then this 

discounted stochastic process will be a martingale or it has the martingale property. 

So, this is the case only if the P value takes e power r times minus d and divided by u 

minus d, if the p is the probability of incremented by u. If the P is equal to e power r 

minus d divided by u minus d, then the discounted stochastic process is a martingale. So, 

that is possible because since P lies between 0 to 1, since whenever the r is the riskless 

interest rate e power r is also lies between d to u. Therefore the u minus d and e power r 

minus d; this value is going to be lies between 0 to 1. So therefore, with the proper value 

of r, d, and u, if the P is of this form, then the discounted stochastic process is a 

martingale. 
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Now we are moving into the fourth example. In the fourth example, we start with the 

filtration F n is a sequence of sigma means and this is the filtration. Let X be any random 

variable with the random variable is a integrable. Define X n is a conditional expectation 

of X given F. So, you are defining a sequence of random variables with the help of the 

conditional expectation of the random variable with given the information up to n or the 

filtration n. 

So, suppose you want to prove the sequence of random variable or the stochastic process 

is a martingale, then it has to satisfy the three conditions which we will discuss in the 

discrete time of a martingale property. So, first we are checking whether the random 

variable X n is integrable. So, if you want to prove the X n is integrable, then you have to 

prove the expectation in absolute random variable has to be a finite; that is finite, then 

the random variable is integrable. So, this is same as expectation of inabsolute, you can 

replace X n by expectation of X given F n. 

You can take the absolute inside the expectation and this is nothing but it is absolute of X 

because that is the way we define; since X n be any random variable with the expectation 

is a finite and you know the definition of a expectation of expectation X given y is going 

to be a expectation of X. So, we are using that property. Hence expectation of 

expectation of X given the filtration F n is same as expectation of that random variable. 

So, here the random variable is absolute X and this is already proved that it is a finite; 



therefore, this is also going to be finite value. Hence the expectation of absolute X n is 

finite, the random variable X n is integrable. 

So, the first condition is verified. By the definition of conditional expectation, X n is a F 

n measurable. The way we have written X n is a expectation of X given F n. So, this the 

definition of conditional expectation; whenever you write conditional expectation of X 

given F n and that exist with S n; that means the random variable X n’s are F n 

measurable for all n. So, by the definition of conditional expectation X n is F n 

measurable for all n. So, the second condition also satisfied. 

Now, we are going to verify the third condition. The expectation of X n plus 1 given F n 

is same as, you can replace X n plus 1 by the definition; that is expectation of X n given 

F n plus 1. You are replacing X n plus 1 with the conditional expectation, given F n. You 

know the property of the filtration. The filtration property is a F 1 contained in F 2, F 2 is 

contained in F 3 and so on. 

Therefore F n is contained in F n plus 1 if you have two sigma fields and one is a sub-

sigma field of other one; F n is a sub-sigma field, F n is a sub-sigma fields of F n plus 1, 

then the conditional expectation of conditional expectation X given F n plus 1 given F n 

is same as conditional expectation of X given F n. We are using the conditional 

expectation given sigma fields with two sigma fields F n contained in F n plus 1; we are 

using the property. 

Hence expectation of X given F n by the definition, expectation of X given F n is nothing 

but X; therefore, this is equal to X n. So, left hand side we started with the expectation of 

X n plus 1 given F n; the right hand side we land up X n. This is the third property; this is 

the third condition, we have defined it in the martingale property in discrete time. So, 

hence all the three conditions are satisfied by the sequence of random variable X n’s. 

Therefore the stochastic process X n is a martingale with respect to the filtration F n. 

Because we have used this filtration to conclude X n is a F n measurable and find out the 

conditional expectation is same as the X n and the random variable X n is a integrable. 

Hence the stochastic process is a martingale with respect to the filtration F n.  
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Now we present the example which was introduced in the beginning of lecture in this 

module. So, this is the example we have given as a motivation for the model martingale. 

A player plays against an infinitely rich adversary. He stands to gain rupees 1 with the 

probability p and lose rupees 1 with the probability q. We are defining the random 

variable X n; the player’s cumulative gain in the first n games. What will be his fortune, 

on the average, on the next game given that his current fortune? We are asking the 

measure in a conditional expectation. 

The game is fair if and only if this sequence of random variable X n is a martingale; that 

is for this sequence of random variables or this stochastic process will be a martingale 

when p and q is equal to half; that means when the game is fair; that means, whether he 

will gain 1 rupee or he lose 1 rupee with the equal probability 1 by 2 and 1 by 2, then the 

game is fair. Whenever the game is fair, the given stochastic process is a martingale. 

And also whenever the given stochastic process is a martingale, in that case, the game 

will be a fair game; that means, the p and q will be half 1 by 2. The conclusion is, it says 

that the player’s expected fortune after one more game played with the knowledge of 

entire past and present is exactly equal to his current fortune. The conditional expectation 

of his one more game expected fortune given the knowledge of entire past and present; 

that means, the filtration till time t or till time n in the discrete case; that is same as 

exactly equal to his current fortune. 



That means it is same as expected; that is same as x suffix n for a discrete case or it is x 

of t for a continuous case. So, whenever the game is fair that is p and q is equal to half, 

then the given stochastic process X n is a martingale. And the conclusion of this problem 

is the players expected fortune after one more game played with the knowledge of entire 

past and present is exactly; exactly is important because later we are going to say more 

than or less than, for that we are going to name them different. So, here it is exactly equal 

to his current fortune. 
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Now, we are moving into the concept called Doob’s martingale process. When we say 

the given stochastic process is going to be a Doob’s martingale process or Doob’s 

process, see the definition: Let Y n be an arbitrary sequence of random variables and 

suppose X is a random variable with expectation in absolute finite. Define X n is the 

conditional expectation of X n given Y naught, Y 1, and so on till Y n for every X n 

where n is running from 0, 1, 2, and so on. 

Expectation of expectation of X given F n plus 1 given F n, we know that F n is 

contained in F n plus 1 and using the property, this becomes expectation of X given F n; 

that is same as X suffix n. In essence, as n increase X n approximates X and the 

approximation becomes more refined because more information has been gathered and 

included in the conditioning. Thus X n n is equal to 0, 1, and so on forms a martingale 

with respect to Y suffix n where Y n for n is equal to 0, 1, 2 called the Doob’s process.  
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Now we define submartingale and supermartingale. Submartingale and supermartingale 

by replacing the equality in the equation one; the equation one in the definition of 

martingale whether it is a discrete time or the continuous time, if you replace equality 

sign with greater than or equal to or less than or equal to respectively for any 0 less than 

or equal to s less than t less than or equal to capital T, the third condition. The first two 

conditional expectations exist and then X t is F t measurable or X n is F n measurable; 

that is the two conditions. 

So, there is no change in those two conditions; only the change in the third condition. 

That is by replacing the inequality in equation one of with a greater than or equal to less 

than or equal to, then the corresponding stochastic process will be called it as 

submartingale whenever it is greater than or equal to sign or it is supermartingale if 

conditional expectation is less than or equal to X of s. If it is equal to for all this interval, 

in that case it is a martingale. If this property is satisfied greater than or equal to s where 

s is less than t and t is less than equal to capital T, then the stochastic process is called a 

submartingale and the less than or equal to condition is satisfied, then the stochastic 

process is called a submartingale.  
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Now we present the Poisson process is a sub martingale. We take the same example N of 

t is a Poisson process with the intensity lambda and earlier we have proved N of t is not a 

martingale because conditional expectation is greater than or equal to N of s, because t 

minus s is greater than 0, lambda is strictly greater than 0. Therefore, this quantity is 

greater than or equal to N of s. 

Hence conditional expectation of N of t given F of s is greater than or equal to N of s is 

always greater than or equal to for all s less than t, where t is less than or equal to 

infinity. So, this condition is satisfied for all s and t. Hence the given stochastic process; 

that is the Poisson process is a submartingale because of this greater than or equal to 

submartingale. 
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Now we present the W t square is a submartingale where W t is a Brownian motion W t 

is a Brownian motion, so we are going to use the property of Brownian motion; that is a 

one Particular important stochastic process which has a lot of applications in financial 

mathematics. So, here we are going to prove W t whole square is a submartingale. How? 

The conditional expectation of W t whole square given F of s is you add one term and 

subtract one term; that is plus W s minus W s inside the W t whole square. 

Using the identity W t minus W s plus W s whole square will be same as W t minus W s 

whole square plus 2 times W s W t minus W s plus W s whole square. So, why I am 

doing this way of adjustment? Because I am going to use the property of non-

overlapping intervals are independent. We are directly checking the conditional 

expectation. The first two conditions are obviously satisfied. The first one is a W t is 

integrable. The Brownian motion for fixed t, W t is a normally distributed with the mean 

zero and the variance t for a standard Brownian motion. Therefore, the mean exist. The 

second one W t is a F t measurable. 

So, whenever we did not discuss the filtration; that means, we have a natural filtration F 

of t. Whenever we have a natural filtration, that means this random variable is a F t 

measurable, F of W of t is a F t measurable. Therefore, second condition is also satisfied 

and we are checking the third condition. The third condition, the right hand side W t 

minus W s whole square plus 2 times W s times W s minus W s plus s and so on. So, 



now we are applying the conditional expectation here given F of s. Therefore, the 

conditional expectation is a linear operator; therefore, it is a conditional expectation of 

this term given F of s, conditional expectation of this term given F of s plus conditional 

expectation of this term given F of s. 

You know that F of s is nothing but the information up to time s and W t minus W s; that 

is also normally distributed with the mean zero and variance t minus s. I am discussing 

about the standard normal distribution. Later we are going to discuss the Brownian 

motion in detail. So, here I am going to use only the distribution and the mean of a 

Brownian motion as well as an independent property. So, here the W t minus W s is 

independent of F of s; therefore, the conditional expectation is nothing but expectation of 

the W t minus W s whole square. Since W t minus W s is normally distributed with the 

mean 0 and variance t minus s, this expectation is nothing but the t minus s. 

The second term again two times conditional expectation of W s multiplied by W t minus 

W s given F of s and F of s is independent of W t minus W s. And you have the 

information till s; therefore, W s has to be treated as a constant. So, the two times W s 

will be treated as a constant. So, hence expectation of W t minus W s given F of s is 

nothing but expectation of W t minus W s because of f of s is independent of W t minus 

W s. And you know that expectation of W t minus W s is zero because this is a normally 

distributed with the mean zero variance t minus s. 

The third term, the conditional expectation of W s whole square divided by F of s is 

nothing but W s whole square, because you know the information till time s. Therefore, 

W s whole square has to be treated as a constant; expectation of constant is constant. 

Hence expectation of W t whole square given F of s is nothing but t minus s plus 0, 

hence t minus s plus W s whole square. So, this is obviously greater than or equal to W s 

whole square. Therefore, the W t whole square is a submartingale because it satisfies the 

third condition with the greater than or equal to sign in the conditional expectation. 

Therefore, the stochastic process W t whole square is a submartingale. 

Some remarks: A stochastic process necessary of a random variable X n is a 

submartingale with respect to the filtration F n n varies from 1, 2, and so on, if and only 

if minus X n is a supermartingale with respect to the same filtration F if and only f is 

very important. 
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Whenever you have a submartingale you can always convert it into the supermartingale 

with the minus sign or if you have a supermartingale; you have a stochastic process with 

the supermartingale property satisfied, then you can convert this stochastic process into 

the submartingale stochastic process by changing the sign. Note that both the stochastic 

process we are discussing the martingale property submartingale or supermartingale 

property, with respect to the same filtration that is important. You cannot convert 

submartingale into supermartingale with the different filtration, not in general. If you 

have a same filtration, then you can transform the submartingale into supermartingale by 

changing the sign in both ways. 

The second remark: A stochastic process X n n varies from 1, 2, and so on is a 

martingale with respect to the filtration F n if and only if X n is both submartingale and 

super martingale with respect to the same filtration. That means if you have a given 

stochastic process martingale, if and only if the same random variable will be treated as a 

submartingale as well as supermartingale. Because we are changing, we are replacing the 

equality sign by greater than or equal to, similarly less than or equal to; we are not 

replacing by strictly greater than or strictly less than. Since we have replacing the 

equality sign in the conditional expectation of the third condition, the definition of 

martingale with less than or equal to greater than or equal to. Hence if you have a 

martingale then the same thing will be supermartingale as well as submartingale.  



Similarly if you have a stochastic process is both submartingale and supermartingale 

without changing the sign or without doing any change, the same stochastic process is a 

submartingale as well as the supermartingale, then definitely that will be a martingale. 

Because if it is both submartingale and supermartingale that means there is no 

conditional expectation with the greater than or equal to or less than or equal to; it must 

be equal to the conditional expectation. Hence the given stochastic process is a 

martingale. These above remarks are also valid for continuous time. 
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In this lecture, we have covered the definition of martingale in continuous time, the 

definition of martingale in the discrete time, then we have discussed few examples and 

followed by that we have discussed, when we can say the given stochastic process is a 

supermartingale or submartingale. We have given few examples for the supermartingale 

as well as submartingale also. And finally, we have given some remarks over 

martingales, submartingale and supermartingale. Here is the list of references. With this 

the lecture 2 of module 6 is complete. 


